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Monday 09:45, George Fox Lecture Theatre 1

Hypergraph Turán Problems in `2-Norm

József Balogh

jobal@illinois.edu

University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

(This talk is based on joint work with Felix Christian Clemen, Bernard Lidický.)

There are various different notions measuring extremality of hypergraphs. We compare
the recently introduced notion of the codegree squared extremal function with the Turán
function, the minimum codegree threshold and the uniform Turán density.

The codegree squared sum co2(G) of a 3-uniform hypergraph G is defined to be the sum
of codegrees squared d(x, y)2 over all pairs of vertices x, y. In other words, this is the
square of the `2-norm of the codegree vector. We are interested in how large co2(G) can
be if we require G to be H-free for some 3-uniform hypergraph H. This maximum value
of co2(G) over all H-free n-vertex 3-uniform hypergraphs G is called the codegree squared
extremal function, which we denote by exco2(n,H).

We systemically study the extremal codegree squared sum of various 3-uniform hyper-
graphs using various proof techniques. Some of our proofs rely on the flag algebra method
while others use more classical tools such as the stability method.
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Monday 14:00, George Fox Lecture Theatre 1

Finite Geometry and Extremal Graph Theory

Valentina Pepe

valentina.pepe@uniroma1.it

Sapienza, University of Rome

The aim of this talk is to enlighten the “geometric” picture behind some extremal graphs:
that can be fascinating itself and it can also suggest new ways to tackle the problem. One
of the nicest examples are the Cayley graphs Γ(G,S), when G is the additive group of a
vector space over a finite field. In this way, we can look from another prospective some
remarkable properties, such as being pseudorandom or clique-free, providing a different
proof of known results and suggesting new ways to tackle long standing open problems.
Some new constructions will be presented.
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Tuesday 09:00, George Fox Lecture Theatre 1

Convex and Combinatorial Tropical Geometry

Josephine Yu

jyu@math.gatech.edu

Georgia Tech

(This talk is based on joint work with Grigoriy Blekherman, Felipe Rincón, Rainer
Sinn, and Cynthia Vinzant.)

Tropical geometry is the geometry over the max-plus algebra, and it is a degeneration or
limit of classical geometric objects under the logarithm or valuation map. We will discuss
how to tropicalize algebraic sets, semialgebraic sets, and convex sets, and highlight an
application to the truncated moment problem in real algebraic geometry.
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Tuesday 13:45, George Fox Lecture Theatre 1

Explicit bounds in graph minors

Paul Wollan

wollan@di.uniroma1.it

Sapienza University of Rome

(This talk is based on joint work with Ken-ichi Kawarabayashi and Robin Thomas.)

Robertson and Seymour proved a theorem approximately characterizing all graphs ex-
cluding some fixed graph H as a minor, a result which has had an enormous impact on
the field with numerous applications in graph theory and theoretical computer science.
The proof is notable for its complexity, stretching over a series of 16 papers. Moreover,
the proof does not give explicit bounds on the parameters involved.

We present recent work yielding new and simplified proofs for the main results in graph
minors series. Beyond simplifying the results, we also for the first time give explicit bounds
on the parameters involved.

10



Wednesday 09:00, George Fox Lecture Theatre 1

Fair partitions

Noga Alon

nalon@math.princeton.edu

Princeton University and Tel Aviv University

A substantial number of results and conjectures deal with the existence of a set of pre-
scribed type which contains a fair share from each member of a finite collection of objects
in a space, or the existence of partitions in which this is the case for every part. Exam-
ples include the Ham-Sandwich Theorem in Measure Theory, the Hobby-Rice Theorem
in Approximation Theory, the Necklace Theorem and the Ryser Conjecture in Discrete
Mathematics, and more. The techniques in the study of these results combine combina-
torial, topological, geometric, probabilistic and algebraic tools. I will describe the topic,
focusing on several recent existence results and their algorithmic aspects.
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Thursday 09:00, George Fox Lecture Theatre 1

High Dimensional Expanders in Theoretical
Computer Science

Irit Dinur

irit.dinur@weizmann.ac.il

Weizmann Institute of Science

Expander graphs have been studied in many areas of mathematics and in computer
science with versatile applications, including coding theory, networking, computational
complexity and geometry.

High-dimensional expanders are a generalization that has been studied in recent years
and their promise is beginning to bear fruit. In the talk, I will survey some powerful
local to global properties of high-dimensional expanders, and describe several interesting
applications, ranging from convergence of random walks to construction of locally testable
codes that prove the c3 conjecture (namely, codes with constant rate, constant distance,
and constant locality).
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Thursday 13:45, George Fox Lecture Theatre 1

Rainbow subgraphs and their applications

Alexey Pokrovskiy

dr.alexey.pokrovskiy@gmail.com

University College London

(This talk is based on joint work with Alp Müyesser.)

A rainbow subgraph in an edge-coloured graph is one in which all edges have different
colours. This talk will be about finding rainbow subgraphs in colourings of graphs that
come from groups. An old question of this type was asked by Hall and Paige. Their
question was equivalent to the following “Let G be a group of order n and consider an edge-
coloured Kn,n, whose parts are each a copy of G and with the edge {x, y} coloured by the
group element xy. For which groups G, does this coloured Kn,n contain a perfect rainbow
matching?” This question is equivalent to asking “which groups G contain a complete
mapping” and also “which multiplication tables of groups contain transversals”. Hall and
Paige conjectured that the answer is “ all groups in which

∏
x∈G x ∈ G′” (where G′ is the

commutator subgroup of the group). They proved that this is a necessary condition, so
the main part of the conjecture is to prove that “

∏
x∈G x ∈ G′ =⇒ the corresponding

Kn,n has a perfect rainbow matching”. The Hall-Paige Conjecture was confirmed in 2009
by Wilcox, Evans, and Bray with a proof using the classification of finite simple groups.
Recently, Eberhard, Manners, and Mrazović found an alternative proof of the conjecture
for sufficiently large groups using ideas from analytic number theory. Their proof gives a
very precise estimate on the number of complete mappings that each group has.

In this talk, a third proof of the conjecture will be presented using a different set of
techniques, this time coming from probabilistic combinatorics. This proof only works for
sufficiently large groups, but generalizes the conjecture in a new direction. Specifically we
not only characterize when the edge coloured Kn,n contains a perfect rainbow matching,
but also when random subgraphs of it contain a perfect rainbow matching.

This extension has a number of applications, such as to problems of Snevily, Cichacz,
Tannenbaum, Evans, and Patrias-Pechenik.
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Friday 09:00, George Fox Lecture Theatre 1

Linear programming and the circuit imbalance
measure

László Végh

l.vegh@lse.ac.uk

London School of Economics

(This talk is based on joint work with Daniel Dadush, Sophie Huiberts, Cedric Koh,
and Bento Natura.)

The existence of a strongly polynomial algorithm for linear programming (LP) is a fun-
damental open question in optimization. Given an LP in the standard equality form

〈c, x〉 s.t. Ax = b , x ≥ 0 ,

for A ∈ Rn×n, b ∈ Rm, c ∈ Rn, such an algorithm would perform poly(n,m) arithmetic
operations. Strongly polynomial algorithms are known for a range of network optimiza-
tion problems. Two significant steps towards general LP are Tardos’s poly(n,m, log ∆A)
algorithm from 1986 and a poly(n,m, log χ̄A) interior point method by Vavasis and Ye
from 1996. Here, ∆A is the maximum subdeterminant of the integer constraint matrix,
and χ̄A is a geometric condition number associated with the matrix A.

We give an overview of recent developments that strengthen and extend these results.
A key object of our study is the circuit imbalance measure κA that bounds the ratios
of the entries of support-minimal vectors in the kernel of A. We exhibit combinatorial
properties and proximity results of linear programs that can be used to design new exact
LP algorithms. In particular, we present new circuit augmentation algorithms, and derive
improved bounds on the circuit diameter of polyhedra.
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Friday 15:10, George Fox Lecture Theatre 1

Intersection problems in Extremal Combinatorics:
theorems, techniques and questions old and new

David Ellis

david.ellis@bristol.ac.uk

University of Bristol

The study of intersection problems in Extremal Combinatorics dates back perhaps to
1938, when Paul Erdős, Chao Ko and Richard Rado proved the (first) ‘Erdős-Ko-Rado
theorem’ on the maximum possible size of an intersecting family of k-element subsets of
a finite set. Since then, a plethora of results of a similar flavour have been proved, for
a range of different mathematical structures, using a wide variety of different methods.
Structures studied in this context have included families of vector subspaces, families of
graphs, subsets of finite groups with given group actions, and of course uniform hyper-
graphs with stronger or weaker intersection conditions imposed. The methods used have
included purely combinatorial methods such as shifting/compressions, algebraic meth-
ods (including linear-algebraic, Fourier analytic and representation-theoretic), and more
recently, analytic, probabilistic and regularity-type methods. As well as being natural
problems in their own right, intersection problems have connections with many other
parts of Combinatorics and with Theoretical Computer Science (and indeed with many
other parts of Mathematics), both through the results themselves, and the methods used.
We will survey a selection of results, methods and open problems in this area.
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Tuesday 15:15, George Fox Lecture Theatre 1

Extremal problems in hypergraphs with
quasirandom links

Mathias Schacht

schacht@math.uni-hamburg.de

Universität Hamburg

(This talk is based on joint work with S. Berger, S. Piga, Chr. Reiher, and V. Rödl.)

Extremal problems for 3-uniform hypergraphs concern the maximum cardinality of a
set E of 3-element subsets of a given n-element set V such that for any ` elements of V
at least one triple is missing in E. This innocent looking problem is still open, despite
a great deal of effort over the last 80 years. We consider a variant of the problem by
imposing additional restrictions on the distribution of the 3-element subsets in E, which
are motivated by the theory of quasirandom hypergraphs. These additional assumptions
yield a finer control over the corresponding extremal problem. In fact, this leads to many
interesting and more manageable subproblems, some of which were already considered by
Erdős and Sós in the 1980ies. In this talk we consider hypergraphs whose vertices have
quasirandom link graphs and report on recent progress for the corresponding extremal
problems.
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Tuesday 15:50, George Fox Lecture Theatre 1

The n-queens problem

Candida Bowtell

candy.bowtell@warwick.ac.uk

University of Warwick

(This talk is based on joint work with Peter Keevash.)

The n-queens problem asks how many ways there are to place n queens on an n × n
chessboard so that no two queens can attack one another, and the toroidal n-queens
problem asks the same question where the board is considered on the surface of a torus.
Let Q(n) denote the number of n-queens configurations on the classical board and T (n)
the number of toroidal n-queens configurations. The toroidal problem was first studied
in 1918 by Pólya who showed that T (n) > 0 if and only if n ≡ 1, 5 mod 6. Much
more recently Luria showed that T (n) ≤ ((1 + o(1))ne−3)n and conjectured equality
when n ≡ 1, 5 mod 6. We prove this conjecture, prior to which no non-trivial lower
bounds were known to hold for all (sufficiently large) n ≡ 1, 5 mod 6. We also show that
Q(n) ≥ ((1 + o(1))ne−3)n for all n ∈ N which was independently proved by Luria and
Simkin and, combined with our toroidal result, completely settles a conjecture of Rivin,
Vardi and Zimmerman regarding both Q(n) and T (n).

In this talk we’ll discuss some of the methods used to prove these results. A crucial
element of this is translating the problem to one of counting matchings in a 4-partite 4-
uniform hypergraph. Our strategy combines a random greedy algorithm to count ‘almost’
configurations with a complex absorbing strategy that uses ideas from the methods of
randomised algebraic construction and iterative absorption.
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Tuesday 16:25, George Fox Lecture Theatre 1

Extremal product free sets in groups

Noam Lifshitz

noamlifshitz@gmail.com

Hebrew university of Jerusalem

(This talk is based on joint work with Peter Keevash and Dor Minzer.)

Let G be a finite groups. A subset A ⊆ G is said to be product free if for each two
elements a, b ∈ A their product ab is not in A. In this talk we improve upon works of
Gowers and Eberhard by determining the largest possible size of a product free subset of
the alternating group An.

While this problem is group theoretic in nature, its solution resembles the theory of
Erdős–Ko–Rado type problems. Indeed, in both cases the solutions can be described as
dictators.

Our proof involves two main techniques:

1. A dichotomy between dictatorial structure and a pseudorandomness notion known
as globalness.

2. A recent powerful tool called Hypercsontractivity for global functions, which allows
going beyond spectral gap when studying pseudorandomness and expansion prop-
erties of graphs.
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Tuesday 17:00, George Fox Lecture Theatre 1

On the Ryser-Brualdi-Stein conjecture

Richard Montgomery

richard.montgomery@warwick.ac.uk

University of Warwick

The Ryser-Brualdi-Stein conjecture states that every Latin square of order n should have
a partial transversal with n − 1 elements, and a full transversal if n is odd. In 2020,
Keevash, Pokrovskiy, Sudakov and Yepremyan improved the long-standing best known
bounds on this conjecture by showing that a partial transversal with n−O(log n/ log log n)
elements always exists. In this talk, I will discuss how to show, for large n, that a partial
transversal with n− 1 elements always exists.
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Tuesday 15:15, George Fox Lecture Theatre 2

Maximum likelihood thresholds via graph rigidity

Daniel Irving Bernstein

dbernstein1@tulane.edu

Tulane University

(This talk is based on joint work with Sean Dewar, Steven Gortler, Tony Nixon, Meera
Sitharam, and Louis Theran.)

The maximum likelihood threshold of a graph is the minimum number of samples required
to guarantee almost sure existence of the maximum likelihood estimate in the correspond-
ing graphical model. In this talk, I will discuss a rigidity-theoretic interpretation of this
problem and show how it leads to some classification results.
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Tuesday 15:50, George Fox Lecture Theatre 2

Algorithms for counting realisations of
minimally rigid graphs

Georg Grasegger

georg.grasegger@ricam.oeaw.ac.at

Johann Radon Institute for Computational and Applied Mathematics, Austrian
Academy of Sciences

(This talk is based on joint work with Jose Capco, Matteo Gallet, Boulos El Hilany,
Christoph Koutschan, Niels Lubbes, Josef Schicho.)

Minimally rigid graphs allow only finitely many non-congruent realisations for a given
generic choice of edge lengths. For instance the minimally rigid graph on four vertices
has four realisations in the plane up to rotations and translations when edge lengths are
chosen generically (see figure).

In recent years we have investigated algorithms for counting the number of such realisa-
tions in the plane and on the sphere. While the algorithms are purely combinatorial the
proofs are based on algebraic geometry. In this talk we give an overview on those algo-
rithms and we point out their differences and what they have in common. Furthermore,
we present computational results.

As a main part we report on recent progress on improving the algorithms using some
combinatorial properties. In particular we show how graph splittings can be used for
speeding up recursive computations. When a minimally rigid graph allows a suitable
splitting we can use trajectories of motions of flexible graphs to determine the number of
realisations by reducing the problem to smaller graphs.
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Tuesday 16:25, George Fox Lecture Theatre 2

Some geometry of delta-matroids

Alex Fink

a.fink@qmul.ac.uk

Queen Mary University of London

(This talk is based on joint work with Chris Eur, Matt Larson and Hunter Spink.)

Some of my favourite ways to see matroids are as matroid basis polytopes, i.e. the convex
hull of basis indicator vectors, and as Bergman fans, cone complexes dual to parts of these
polytopes. These viewpoints are fruitful because of connections not only to optimisation
but also to algebraic geometry. It’s now becoming clear how to use the same techniques
for delta-matroids. I’ll describe, based on joint work in progress, a couple ways these
geometric connections lead to combinatorial consequences.
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Tuesday 17:00, George Fox Lecture Theatre 2

Global rigidity of triangulated manifolds

Shin-ichi Tanigawa

tanigawa@mist.i.u-tokyo.ac.jp

University of Tokyo

(This talk is based on joint work with James Cruickshank and Bill Jackson.)

The rigidity of triangulated surfaces is a classical topic in discrete geometry. In this work,
we prove that if G is the graph of a connected triangulated (d − 1)-manifold, for d ≥ 3,
then G is generically globally rigid in Rd if and only if it is (d+1)-connected and, if d = 3,
G is not planar. The special case d = 3 resolves a conjecture of Connelly.
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Tuesday 15:15, George Fox Lecture Theatre 5

Switching for 2-designs

Andrea Švob

asvob@math.uniri.hr

Faculty of Mathematics, University of Rijeka

(This talk is based on joint work with Dean Crnković.)

In this talk, we introduce a switching for 2-designs described in [1]. We illustrate the
method by applying it to some symmetric (64, 28, 12) designs. Further, we show that
this type of switching can be applied to any symmetric design related to a Bush-type
Hadamard matrix. We apply the switching to the designs constructed in [2, 3, 4] and
construct symmetric (36, 15, 6) designs leading to new Bush-type Hadamard matrices of
order 36, and symmetric (100, 45, 20) designs yielding Bush-type Hadamard matrices of
order 100. We show that switching introduced in this talk can be applied directly to orbit
matrices.

[1] D. Crnković, A. Švob, Switching for 2-designs, Des. Codes Cryptogr., to appear.

[2] Z. Janko, The existence of a Bush-type Hadamard matrix of order 36 and two new
infinite classes of symmetric designs, J. Combin. Theory Ser. A 95 (2001), 360–364.

[3] Z. Janko, H. Kharaghani, A block negacyclic Bush-type Hadamard matrix and two
strongly regular graphs, J. Combin. Theory Ser. A 98 (2002), 118–126.

[4] Z. Janko, H. Kharaghani, V. D. Tonchev, Bush-type Hadamard matrices and sym-
metric designs, J. Combin. Des. 9 (2001), 72–78.
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Tuesday 15:50, George Fox Lecture Theatre 5

Pairwise balanced designs and periodic Golay
pairs

Dean Crnković

deanc@math.uniri.hr

University of Rijeka, Croatia

(This talk is based on joint work with Doris Dumičić Danilović, Ronan Egan and
Andrea Švob.)

In this talk we exploit a relationship between certain pairwise balanced designs (PBDs)
with v points and periodic Golay pairs (PGPs) of length v, to classify PGPs of length
less than 40 (see [1]). PBDs are constructed using orbit matrices of subgroups of a cyclic
group acting on the designs, which corresponds to some compression techniques which
apply to complementary sequences (see [2]). We use similar tools to construct new PGPs
of lengths greater than 40 where classifications remain incomplete, and demonstrate that
under some extra conditions on an automorphism group of the corresponding PBD, a PGP
of length 90 will not exist. Length 90 remains the smallest length for which existence of
a periodic Golay pair is undecided. Further, we show that under certain conditions the
incidence and orbit matrices of PBDs related to PGPs span quasi-cyclic self-orthogonal
codes.

References

[1] D. Crnković, D. Dumičić Danilović, R. Egan, A. Švob, Periodic Golay pairs and
pairwise balanced designs, J. Algebraic Combin. 55 (2022), 245-257.

[2] D. Ž. Doković, I. S. Kotsireas, Compression of periodic complementary sequences
and applications, Des. Codes Cryptogr. 74 (2015), 365–377.
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Tuesday 16:25, George Fox Lecture Theatre 5

Finding geometries in the power graphs of simple
groups

Peter J. Cameron

pjc20@st-andrews.ac.uk

University of St Andrews

The power graph of a finite group G has vertex set G, with two elements joined by an
edge if one is a power of the other. It has the defects (from some points of view) that the
identity is joined to all other vertices, and there are many pairs of twin vertices (with
the same neighbourhood except possibly one another). So it is natural to remove the
identity and small components, and shrink the twin classes recursively until no pairs of
twins remain.

It may happen that this reduces the graph to a single vertex. It is known for which simple
groups this happens (modulo some probably very difficult number-theoretic problems);
these are certain groups PSL(2, q) and Sz(q) together with PSL(3, 4). For other groups
the result may be an interesting graph. For the Mathieu group M11, for example, we find
lurking within it the incidence graph of a partial linear space with 165 points, three points
on each line and four lines through each point, whose incidence graph has diameter and
girth equal to 10.

I will report on similar investigations of other simple groups. This is still in the exploratory
stage.
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Tuesday 17:00, George Fox Lecture Theatre 5

Resistance distance in the context of association
schemes and coherent configurations

R. A. Bailey

rab24@st-andrews.ac.uk

University of St Andrews

(This talk is based on joint work with Peter Cameron and Michael Kagan.)

Let Ω be a finite set. Any graph whose vertex-set is Ω defines a partition of Ω × Ω into
three parts: the diagonal, the edges and the non-edges. The corresponding adjacency
matrices are I, A and J −A− I, where I is the identity matrix and J is the all-1 matrix.
If the set of real linear combinations of these is closed under multiplication then the graph
is strongly regular.

This idea can be generalized to partitions of Ω with more parts. Usually we insist that
the diagonal is a union of parts, and that if A is the adjacency matrix of any part then its
transpose A> is also the adjacency matrix of a part. Closure under multiplication gives
a coherent configuration. A coherent configuration in which all adjacency matrices are
symmetric is an association scheme. Symmetry and closure under Jordan multiplication
gives a Jordan scheme: see [5].

The set of partitions of Ω × Ω is partially ordered by refinement. The Weisfeiler–Leman
algorithm was introduced in [7] to find the coarsest coherent configuration which refines
a given graph. If the graph has large diameter, this algorithm generally takes many steps
to stabilize.

Following some work of Biggs [2], Kagan had an idea for an algorithm that would take
fewer steps: see [4]. This uses the idea of resistance distance in a graph, which is a metric
which has been shown to be more useful than graph distance in the context of optimal
incomplete-block designs: see [1, 6].

Kagan and Klin showed in [3] that the proposed resistance-distance transform (RDT)
reduces many distance-regular graphs to the corresponding association scheme in a single
step. Cameron proved that this is true for any graph for which the powers of A define an
association scheme.

Unfortunately, the original definition of RDT does not always refine the original partition
if the graph is not distance-regular. Furthermore, the refinements for a graph and its com-
plement may be different. To overcome these difficulties, our proposed RDT2 starts with
variables, one on each edge and another on each non-edge. Using these as conductances,
resistance distances are then calculated as rational functions of the variables.

[1] R. A. Bailey and Peter J. Cameron: Combinatorics of optimal designs. In: Surveys in Combinatorics
2009 (eds. S. Huczynska, J. D. Mitchell and C. M. Roney-Dougal). London Mathematical Society
Lecture Notes Series, 365, Cambridge University Press, Cambridge, 2009, pp. 19–73.

30



[2] Norman L. Biggs: Potential theory on distance-regular graphs. Combinatorics, Probability and Com-
puting, 2 (1993), 243–255.

[3] Mikhail Kagan and Misha Klin: Resistance-distance transform (RDT) in the context of Weisfeiler–
Leman stabilization (WLS). Talk presented at the conference on ‘Regularity and Symmetry’ in Pilsen
in 2018.

[4] Mikhail Kagan and Brian Mata: A physics perspective on resistance distance for graphs. Mathematics
in Computer Science, 13 (2019), 103–115.

[5] B. V. Shah: A generalisation of partially balanced incomplete-block designs. Annals of Mathematical
Statistics, 30 (1959), 1041–1050.

[6] T. Tjur: Block designs and electrical networks. Annals of Statistics, 19 (1991), 1010–1027.

[7] B. Yu. Weisfeiler and A. A. Leman: Reduction of a graph to a canonical form and an algebra which
appears in the process. Scientific-Techincal Investigations, Series 2, 9 (1968), 12–16.
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Thursday 15:15, George Fox Lecture Theatre 1

The k-th shortest path in an edge-weighted Kn

Paul Balister

paul.balister@maths.ox.ac.uk

University of Oxford

(This talk is based on joint work with Stephanie Gerke.)

Suppose we weight the edges of the complete graph Kn with independent exponential
Exp(1) random weights, pick two distinct vertices s and t, and then successively construct,
and then remove, the edges of minimal weight s-t paths. We describe asymptotically the
distributions of the weights of the first k paths obtained in this process. In particular we
show that the mean weight of the kth path is

1
n

(
log n+ γ + 2ζ(3) + 2ζ(5) + · · ·+ 2ζ(2k − 1) + o(1)

)

as n→∞ when k is a constant, and where γ is the Euler–Mascheroni constant and ζ(s)
is the Riemann zeta function.
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Thursday 15:50, George Fox Lecture Theatre 1

Hypergraph matchings with(out) conflicts

Stefan Glock

dr.stefan.glock@gmail.com

ETH Zürich

(This talk is based on joint work with Felix Joos, Jaehoon Kim, Marcus Kühn and
Lyuben Lichev.)

A celebrated theorem of Pippenger, and Frankl and Rödl states that every almost-regular,
uniform hypergraph H with small maximum codegree has an almost-perfect matching.
We extend this result by obtaining a “conflict-free” matching, where conflicts are encoded
via a collection C of subsets C ⊆ E(H). We say that a matchingM⊆ E(H) is conflict-free
if M does not contain an element of C as a subset. Under natural assumptions on C, we
prove that H has a conflict-free, almost-perfect matching. This has many applications,
one of which yields new asymptotic results for so-called “high-girth” Steiner systems.
Our main tool is a random greedy algorithm which we call the “conflict-free matching
process”. Similar results have been proved independently by Delcourt and Postle.
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Thursday 16:25, George Fox Lecture Theatre 1

Erdős-Renyi shotgun reconstruction

Gal Kronenberg

kronenberg@maths.ox.ac.uk

University of Oxford

(This talk is based on joint work with Tom Johnston, Alexander Roberts, and Alex
Scott.)

We say that a graph G is reconstructible from its r-neighbourhoods if all graphs H
having the same collection of r-balls as G up to isomorphism, are isomorphic to G. We
are interested in the reconstruction of the Erdos-Renyi graph G(n, p) for a wide range of
values of r, aiming to determine the values of p for which G(n, p) is r-reconstructible with
high probability. Mossel and Ross [3] considered this problem in the sparse case where
p = C/n, and they also considered reconstruction in the dense case where p � 1/n,
and showed that the the graph G(n, p) can be reconstructed from its 3-neighbourhoods
with high probability provided that p � log2(n)/n. Later, Gaudio and Mossel [1] studied
reconstruction from the 1- and 2-neighbourhoods, giving bounds on the values of p for
which G(n, p) is reconsructible. For 1-neighbourhoods, this was improved very recently
by Huang and Tikhomirov [2] who determined the correct threshold up to logarithmic
factors, around n−1/2.

In this talk we will show new bounds on p for the r-reconstructibility problem in G(n, p).
We improve the bounds for 2-neighbourhoods given by Gaudio and Mossel by polynomial
factors. We also improve the result of Huang and Tikhomirov for 1-neighbourhoods, show-
ing that the logarithmic factor is necessary. Finally, we determine the exact thresholds
for r-reconstructibility for r ≥ 3.

[1] Julia Gaudio, and Elchanan Mossel. “Shotgun assembly of Erdős-Rényi random
graphs.” Electronic Communications in Probability 27 (2022): 1–14.

[2] Han Huang, and Konstantin Tikhomirov. “Shotgun assembly of unlabeled erdos-
renyi graphs.” arXiv preprint arXiv:2108.09636 (2021).

[3] Elchanan Mossel, and Nathan Ross. “Shotgun assembly of labeled graphs.” IEEE
Transactions on Network Science and Engineering 6, no. 2 (2017): 145–157.
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Thursday 17:00, George Fox Lecture Theatre 1

The Ising model on line graphs

Mark Jerrum

m.jerrum@qmul.ac.uk

Queen Mary University of London

(This talk is based on joint work with Martin Dyer, Marc Heinrich and Haiko Müller
(Leeds).)

Line graphs are well studied in graph theory. They also occasionally appear as crystal
lattices arising in nature, such as the the kagome and pyrochlore lattices. It seems natu-
ral, then, to study models from statistical physics in the context of line graphs. The Ising
model is the most intensively studied such model. It is defined on a base graph G. Config-
urations of the model are assignments V (G)→ {−1,+1} of ‘spins’ to the vertices of G. In
the antiferromagnetic case, adjacent spins prefer to differ, so configurations with a large
number of edges of disagreement are assigned higher weight, and have correspondingly
higher probability of occurrence in the ‘Gibbs distribution’ on configurations. There is a
parameter called ‘temperature’ that controls the strength of interaction along edges; the
lower the temperature the stronger the interactions. At absolute zero, only the configu-
rations of highest weight occur; these are the ‘ground states’, which in our case are the
maximum cuts in G.

I’ll start with a result obtained jointly with Martin Dyer, Marc Heinrich and Haiko Müller
concerning the antiferromagnetic Ising model on line graphs. Specifically, we studied the
mixing time (time to near-stationarity) of a certain simple ‘Glauber’ dynamics on the con-
figurations, which changes just one vertex spin in each time step. The informal statement
is that Glauber dynamics mixes in polynomial time (in the number of vertices in G) at
any non-zero temperature. The main tool used in establishing this result is the canonical
paths method, specifically the ‘winding’ technology of McQuillan. I’ll describe subsequent
work by others in this direction, based on more recent techniques such as interpolation
along lines in zero-free regions of the partition function, and spectral independence. This
work is more analytical and less combinatorial in flavour, so these improvements will
not receive the attention due to them. The phenomenon of mixing at all temperatures is
intriguing and seems worth studying further.
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Thursday 15:15, George Fox Lecture Theatre 2

Subsets of Fn
p × Fn

p without L-shaped
configurations

Sarah Peluse

speluse@princeton.edu

IAS/Princeton

I will discuss the difficult problem of proving reasonable bounds in the multidimensional
generalization of Szemerédi’s theorem and describe a proof of such bounds for sets lacking
nontrivial configurations of the form (x, y), (x, y + z), (x, y + 2z), (x + z, y) in the finite
field model setting.
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Thursday 15:50, George Fox Lecture Theatre 2

Quasirandomness for latin squares and counting
transversals

Freddie Manners

fmanners@ucsd.edu

University of California, San Diego

(This talk is based on joint work with Sean Eberhard and Rudi Mrazović.)

A latin square is an n × n grid filled with symbols {1, . . . , n} such that every symbol
appears once in every row and in every column. A transversal of a latin square is a
selection of n grid cells, comprising one from each row, one from each column, and one
of each symbol. An old conjecture of Ryser asserts that every latin square of odd order
has a transversal.

A recent result of Kwan shows that a randomly chosen latin square has a transversal,
almost surely. I will discuss an analogue of this result (with a completely different proof)
for latin squares which are “quasirandom” in a certain sense, meaning roughly that they
do not resemble the multiplication table of any abelian group.

In this case we are even able to count the number of transversals, asympotically, using
techniques resembling the circle method from analytic number theory.
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Thursday 16:25, George Fox Lecture Theatre 2

The Typical Structure of Sets with Small Sumset

Natasha Morrison

nmorrison@uvic.ca

University of Victoria

(This talk is based on joint work with Marcelo Campos, Mauricio Collares, Rob Morris
and Victor Souza.)

One of the central objects of interest in additive combinatorics is the sumset A + B =
{a + b : a ∈ A, b ∈ B} of two sets A,B of integers. Our main theorem, which improves
results of Green and Morris, and of Mazur, implies that the following holds for every
fixed λ > 2 and every k > (log n)4: if ω goes to infinity as n goes to infinity (arbitrarily
slowly), then almost all sets A ⊆ [n] with |A| = k and |A+ A| < λk are contained in an
arithmetic progression of length λk/2 + ω.
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Thursday 17:00, George Fox Lecture Theatre 2

Finding large additive and multiplicative Sidon
sets in sets of integers

Akshat Mudgal

akshat.mudgal@maths.ox.ac.uk

University of Oxford

(This talk is based on joint work with Yifan Jing.)

Given natural numbers s and k, we say that a finite set X of integers is an additive Bs[k]
set if for any integer n, the number of solutions to the equation

n = x1 + ...+ xs,

with x1, ..., xs lying in X, is at most k, where we consider two such solutions to be the same
if they differ only in the ordering of the summands. We define a multiplicative Bs[k] set
analogously. These sets have been studied thoroughly from various different perspectives
in combinatorial and additive number theory. For instance, even in the case s = 2 and
k = 1, wherein such sets are referred to as Sidon sets, the problem of characterising the
largest additive Bs[k] set in {1, 2, ..., N} remains a major open question in the area.

In this talk, we consider this problem from an arithmetic combinatorial perspective, and
so, we show that for every natural number s and for every finite set A of integers, the
largest additive Bs[1] subset B of A and the largest multiplicative Bs[1] subset C of A
satisfy

max{|B|, |C|} �s |A|ηs/s,

where ηs � (log log s)1/2−o(1).
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Thursday 15:15, George Fox Lecture Theatre 5

Induced subgraphs and tree decompositions

Tara Abrishami

taraa@princeton.edu

Princeton University

(This talk is based on joint work with Maria Chudnovsky, Sepehr Hajebi, and Sophie
Spirkl.)

A tree decomposition of a graph G is a tree T together with a map χ : V (T ) → 2V (G)

that roughly organizes the vertices of G into a “tree-like” structure. The treewidth of G
is a graph parameter that uses tree decompositions to measure how “close to a tree” G
is. Graphs with small treewidth have nice structural and algorithmic properties; for ex-
ample, many NP-hard algorithmic problems can be solved in polynomial time in graphs
with constant or logarithmic treewidth. As part of the Graph Minors Project, Robertson
and Seymour proved a complete characterization of graphs with constant treewidth for
graph classes defined by forbidden minors. In contrast, although graph classes defined
by forbidden induced subgraphs (called hereditary graph classes) are the subject of much
interest and research in structural graph theory, not much is currently understood regard-
ing which hereditary graph classes have bounded treewidth. Recently, Korhonen provided
a complete characterization of constant treewidth in the case of bounded maximum de-
gree. In this talk, we discuss recent results proving that certain hereditary graph classes
with unbounded degree have constant or logarithmic treewidth. These results each rely
on iteratively decomposing graphs along sequences of well-chosen “non-crossing” cutsets,
along with other structural tools and properties.
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Thursday 15:50, George Fox Lecture Theatre 5

An algorithmic weakening of the Erdős-Hajnal
conjecture

Édouard Bonnet

edouard.bonnet@ens-lyon.fr

LIP, ENS Lyon

(This talk is based on joint work with Stéphan Thomassé, Xuan Thang Tran, and Rémi
Watrigant.)

We explore the approximability of the Maximum Independent Set problem in graphs
excluding a fixed H as an induced subgraph (henceforth, H-free graphs). We propose
the improved approximation conjecture: For every graph H, there is a constant δ > 0
such that Maximum Independent Set can be n1−δ-approximated in H-free n-vertex
graphs, in randomized polynomial time. Such an approximation algorithm in general
graphs would imply the unlikely complexity-theoretic collapse RP=NP. The improved
approximation conjecture is weaker than an effective version of the Erdős-Hajnal conjec-
ture, where a large enough independent set or clique shall be output in polynomal time.
Like for the Erdős-Hajnal conjecture, the set of graphs H for which the improved approx-
imation conjecture is established is closed under substitution. In an attempt to match
the known approximation ratio of the triangle-free case with an algorithmic barrier, we
present a strong inapproximability result making use of triangle-free constructions with
small independence number.
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Thursday 16:25, George Fox Lecture Theatre 5

Short induced cycles in planar graphs

Michael Savery

savery@maths.ox.ac.uk

University of Oxford

In 1975, Pippenger and Golumbic instigated the study of the maximum number of induced
copies of a small graph H which can be contained in an n-vertex graph G. This problem
has received considerable attention over the years, yet there remain many small graphs
H for which the maximum is not known even asymptotically, including the path on four
vertices and many graphs on five vertices. The case where H is a cycle is of particular
interest and was solved for 5-cycles for large enough n by Balogh, Hu, Lidický, and
Pfender in 2016.

In this talk we will discuss recent progress on the analogous problem in the setting where
the graphs G and H are planar. We will focus on the cases where H is the 4-, 5-, or 6-
cycle, in each case giving exactly, for sufficiently large n, the maximum number of induced
copies of H that can be contained in a planar graph on n vertices, and classifying the
graphs which achieve this maximum.
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Thursday 17:00, George Fox Lecture Theatre 5

Understanding graphs with no long claws

Pawe l Rza̧żewski

p.rzazewski@mini.pw.edu.pl

Warsaw University of Technology & University of Warsaw

A classic result of Alekseev asserts that for connected H the Max Independent Set (MIS)
problem in H-free graphs in NP-hard unless H is a path or a subdivided claw. Recently
we have witnessed some great progress in understanding the complexity of MIS in Pt-free
graphs. The situation for forbidden subdivided claws is, however, much less understood.

During the talk we will present some recent advances in understanding the structure of
graphs with no long induced claws, and their applications in desgining algorithms for MIS
and related problems [1, 2, 3].

[1] Tara Abrishami, Maria Chudnovsky, Cemil Dibek, and Pawe l Rza̧żewski.
Polynomial-time algorithm for maximum independent set in bounded-degree graphs
with no long induced claws. In Niv Buchbinder Joseph (Seffi) Naor, editor,
Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA
2022, Virtual Conference, January 9-12, 2022, pages 1448–1470. SIAM, 2022.
https://doi.org/10.1137/1.9781611977073.61

[2] Maria Chudnovsky, Marcin Pilipczuk, Micha l Pilipczuk, and Stéphan Thomassé.
Quasi-polynomial time approximation schemes for the Maximum Weight Inde-
pendent Set Problem in H-free graphs. In Shuchi Chawla, editor, Proceed-
ings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020,
Salt Lake City, UT, USA, January 5-8, 2020, pages 2260–2278. SIAM, 2020.
https://doi.org/10.1137/1.9781611975994.139

[3] Konrad Majewski, Tomáš Masař́ık, Jana Novotná, Karolina Okrasa, Marcin
Pilipczuk, Pawe l Rza̧żewski, Marek Soko lowski. Max Weight Independent Set
in graphs with no long claws: An analog of the Gyárfás’ path argument
arXiv:2203.04836, 2022. https://arxiv.org/abs/2203.04836
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Monday 11:15, George Fox Lecture Theatre 1

Partial Multi-colourings

Jan van den Heuvel

j.van-den-heuvel@lse.ac.uk

London School of Economics and Political Science

(This talk is based on joint work with Xinyi Xu.)

Suppose you have a graph G for which the vertices can be properly coloured with t colours,
but you only have s < t colours available. Then it is an easy observation that you can

still properly colour at least a fraction
s

t
of the vertices of G. (More formally: there exists

an induced subgraph H of G such that H is s-colourable and |V (H)| ≥ s

t
|V (G)|.)

But the situation is less clear when we look at multi-colourings. Here a (t, k)-colouring of
a graph is an assignment of a k-subset of {1, 2, . . . , t} to each vertex such that adjacent
vertices receive disjoint subsets.

In this talk we look at the following question: if a graph G is (t, k)-colourable, and we
want to find a large (s, `)-colourable induced subgraph of G (for some given (s, `)), how
large a part can we guarantee? Answering that question involves having a detailed look
at Kneser graphs and related structures, and touches on several open problems in those
areas.
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Monday 11:40, George Fox Lecture Theatre 1

Towards Stahl’s Conjecture:
Multi-Colouring of Kneser Graphs

Xinyi Xu

x.xu46@lse.ac.uk

London School of Economics and Political Science

(This talk is based on joint work with Jan van den Heuvel.)

If a graph is n-colourable, then it obviously is n′-colourable for any n′ ≥ n. But the
situation is not so clear when we consider multi-colourings of graphs. A graph is (n, k)-
colourable if we can assign each vertex a k-subset of {1, 2, . . . , n}, such that adjacent
vertices receive disjoint subsets.

In this talk, we consider the following problem: if a graph is (n, k)-colourable, then for
what pairs (n′, k′) is it also (n′, k′)-colourable? This question can be translated into a
question regarding multi-colourings of Kneser graphs, for which Stahl formulated a con-
jecture in 1976. We present new results and discuss some observations that lead to simple
proofs of some known cases of the conjecture.
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Monday 12:05, George Fox Lecture Theatre 1

Minimium color degree thresholds for rainbow
subgraphs

Theodore Molla

molla@usf.edu

University of South Florida

(This talk is based on joint work with Andrzej Czygrinow and Brendan Nagle.)

Let G = (V,E) be a graph on n vertices and let c : E → N be a coloring of the edges of G.
The color degree dc(v) of a vertex v ∈ V is the number of distinct colors that appear on the
edges incident to v (i.e., dc(v) = |c−1({e ∈ E : v ∈ e})|). We let δc(G) = minv∈V {dc(v)}
be the minimum color degree of G. In 2013, H. Li proved that if δc(G) ≥ (n+ 1)/2, then
G contains a rainbow triangle and this is tight as witnessed by a properly edge-colored
balanced bipartite graph. In this talk, we will explore generalizations and extensions of
this result. In particular, for ` ≥ 4, we will discuss the minimum color degree threshold
for the existence of a rainbow `-clique.
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Monday 15:30, George Fox Lecture Theatre 1

From domination to isolation of graphs

Peter Borg

peter.borg@um.edu.mt

University of Malta

In 2017, Caro and Hansberg [6] introduced the isolation problem, which generalizes the
domination problem. Given a graph G and a set F of graphs, the F-isolation number
of G is the size of a smallest subset D of the vertex set of G such that G − N [D] (the
graph obtained from G by removing the closed neighbourhood of D) does not contain
a copy of a graph in F . When F consists of a 1-clique, the F -isolation number is the
domination number. Caro and Hansberg [6] obtained many results on the F -isolation
number, and they asked for the best possible upper bound on the F -isolation number for
the case where F consists of a k-clique and for the case where F is the set of cycles. The
solutions [1, 3] to these problems will be presented together with other results, including
an extension of Chvátal’s Art Gallery Theorem. Some of this work was done jointly with
Kurt Fenech and Pawaton Kaemawichanurat.

[1] P. Borg, Isolation of cycles, Graphs and Combinatorics 36 (2020), 631–637.

[2] P. Borg, Isolation of connected graphs, arXiv:2110.03773.

[3] P. Borg, K. Fenech and P. Kaemawichanurat, Isolation of k-cliques, Discrete Mathematics 343 (2020),
paper 111879.

[4] P. Borg, K. Fenech and P. Kaemawichanurat, Isolation of k-cliques II, Discrete Mathematics, in
press.

[5] P. Borg and P. Kaemawichanurat, Domination and partial domination of maximal outerplanar
graphs, arXiv:2002.06014.

[6] Y. Caro and A. Hansberg, Partial domination - the isolation number of a graph, FiloMath 31:12
(2017), 3925–3944.
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Monday 15:55, George Fox Lecture Theatre 1

Separating Path Systems for the Complete Graph

Belinda Wickes

b.wickes@qmul.ac.uk

Queen Mary University of London

Let G be any graph and let S be a family of subsets of E(G) such that for any (unordered)
edges e, e′ ∈ E(G) there is some P ∈ S with e ∈ P and e′ /∈ P . Then we say that S is
a separating system for G and that P separates e and e′. If we also have the condition
that every element of S is a path in G, then we call S a separating path system of G.

Below is an example of a separating path system for K5. For any pair of edges from K5,
one of the paths below will contain exactly one of the two edges.

In general we wish to determine the smallest number of paths required for a separating
path system of G, we use f(G) to denote this value. Falgas-Ravry, Kittipassorn, Korándi,
Letzter, and Narayanan [2] raised the question of determining f(Kn), which will be the
focus of this talk. The best known bounds for this are

n− 1 ≤ f(Kn) ≤ 2n + 4.

The lower bound uses a simple counting argument, while the upper bound in [1] uses a
probabilistic argument. We give a construction improving the upper bound to

f(Kn) ≤
(

21

16
+ o(1)

)
n

in general, and to f(Kn) ≤ n for n ≤ 20.

Our constructions use a concept we call generator paths, which reduces the problem to
finding a single path which then generates a separating path system of n paths. We show
that f(Kn) ≤ n if Kn contains a generator path. Such paths can be found by hand for
n ≤ 20. In general, we show that we can approximate a generator path for Kn and use a
number of correcting paths to give a bound of f(Kn) ≤ (21

16
+ o(1))n.

[1] J. Balogh, B. Csaba, R. Martin, and A. Pluhár. On the path separation number of
graphs. Discrete Applied Mathematics, 213 (2016): 26-33.

[2] V. Falgas-Ravry, T. Kittipassorn, D. Korándi, S. Letzter, and B. Narayanan. Sepa-
rating Path Systems. Journal of Combinatorics, 5.3 (2014): 335-354.
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Monday 16:20, George Fox Lecture Theatre 1

Triangle saturated graphs with large minimum
degree

Asier Calbet

a.calbetripodas@qmul.ac.uk

Queen Mary University of London

Given a graph H, we say that a graph G is H-saturated if G is maximally H-free, meaning
G contains no copy of H but adding any new edge to G creates a copy of H. The general
saturation problem is to determine sat(n,H), the minimum number of edges in an H-
saturated graph G on n vertices.

The special case when H is a triangle is straightforward - it is an easy exercise to show
that sat(n,K3) = n−1 for n ≥ 1 and that the unique extremal graph is a star. Note that
a star has many vertices of degree 1. One might ask what happens if we forbid such small
degree vertices. We then have the more difficult problem of determining sat(n,K3, t), the
minimum number of edges in a triangle saturated graph G on n vertices that additionally
has minimum degree at least t.

Day [1] showed that for fixed t, sat(n,K3, t) = tn− c(t) for large enough n, where c(t) is

a constant depending on t. He proved the bounds 2tt3/2 � c(t) ≤ tt
2t2

. We show that the
order of magnitude of c(t) is given by c(t) = Θ

(
4t/
√
t
)
.

The order of magnitude of c(t) turns out to be intimately related to Bollobás’ celebrated
Two Families Theorem. We end by presenting a conjectured generalisation of the Two
Families Theorem, which, if proven, would allow one to extend these results from K3 to
general Kr.

[1] DAY, A. (2017). Saturated Graphs of Prescribed Minimum Degree. Combinatorics,
Probability and Computing, 26(2), 201-207. doi:10.1017/S0963548316000377
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Monday 16:45, George Fox Lecture Theatre 1

Complete subgraphs in a multipartite graph

Andrew Treglown

a.c.treglown@bham.ac.uk

University of Birmingham

(This talk is based on joint work with Allan Lo and Yi Zhao.)

In 1975 Bollobás, Erdős, and Szemerédi asked the following question: given positive in-
tegers n, t, r with 2 ≤ t ≤ r − 1, what is the largest minimum degree δ(G) among all
r-partite graphs G with parts of size n and which do not contain a copy of Kt+1? The
r = t + 1 case has attracted a lot of attention and was fully resolved by Haxell and
Szabó, and Szabó and Tardos in 2006. In this talk we investigate the r > t + 1 case of
the problem, which has remained dormant for over forty years. We resolve the problem
exactly in the case when r ≡ −1 (mod t), and up to an additive constant for many other
cases, including when r ≥ (3t − 1)(t − 1). Our approach utilizes a connection to the
related problem of determining the maximum of the minimum degrees among the family
of balanced r-partite rn-vertex graphs of chromatic number at most t.
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Monday 11:15, George Fox Lecture Theatre 2

The sequence of prime gaps is graphic1

Péter L. Erdős

erdos.peter@renyi.hu

Alfréd Rényi Institute of Mathematics (LERN)

(This talk is based on joint work with Harcos, Kharel, Maga, Mezei, Toroczkai.)

Let us call a simple graph on n ≥ 2 vertices a prime gap graph if its vertex degrees
are 1 and the first n− 1 prime gaps. We show that such a graph exists for every large n,
and in fact for every n ≥ 2 if we assume the Riemann hypothesis. Moreover, an infinite
sequence of prime gap graphs can be generated by the so-called degree preserving growth
process.

This DPG process ([2]) is the iterative applications of degree-preserving steps, which
can be described as follows: let G be a simple graph with degree sequence D. In each
step, a new vertex u joins the graph by removing a k-element matching of G followed by
connecting u to the vertices incident to the k removed edges. The degree of the newly
inserted vertex is d = 2k. The degree sequence of the newly generated graph is D ◦ d,
that is, d is concatenated to the end of D. The proofs are based on the following new
graph theoretic results:

Theorem 1. (i) Let D = (d1, . . . , dn) be a sequence of positive integers such that ‖D‖1 =∑n
`=1 d` is even. Let 1 < p ≤ ∞ be a parameter. Assume that the following Lp-norm

bound holds:
‖2 + D‖p ≤ n

1
2
+ 1

2p .

Then degree sequence D satisfies the Erdős-Gallai condition, therefore it is graphic.
(ii) Let G be any simple graph with degree sequence D. Assume that d ≥ 2 is an even
integer satisfying

4d1−
1
p‖D‖p ≤ ‖D‖1.

Then in G there exists a d/2-element matching, consequently D ◦ d is graphic.

On this basis we iteratively grow the infinite sequence of prime gap graphs, using DP-
steps. The proof uses the Riemann hypothesis and new, serious analytical number theo-
retic results.

[1] P.L. Erdős - G. Harcos - S.R. Kharel - P. Maga - T.R. Mezei - Z. Toroczkai: The
sequence of prime gaps is graphic, arXiv:2205.00580 (2022), pp. 14.

[2] S. Kharel, T. R. Mezei, S. Chung, P. L. Erdős, Z. Toroczkai, Degree-
preserving network growth, Nature Physics 18 (2022), 100–106.
DOI:10.1038/s41567-021-01417-7

1This talk is based on [1].
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Monday 11:40, George Fox Lecture Theatre 2

On k-fold sums of integer sets
Structure and irregularity

Anna M. Limbach

limbach@math2.rwth-aachen.de

RWTH Aachen University

For k ∈ N0 and a finite set M ⊆ Z, we define the k-fold sum kM := {∑k
i=1 xi | x ∈Mk}.

Furthermore, we define the function HFM : N0 → N0, k 7→ |kM |, which is a function
of polynomial type, i.e. there are a rational polynomial pM and a minimal non-negative
integer k0 such that HFM(k) = pM(k) for every k ≥ k0. In the following, we are interested
in a tight upper bound on k0.

We investigate sets M = {m0,m1, . . . ,ml} ⊆ N0 with 0 = m0 < m1 < . . . < ml and
gcd(M) = 1. These sets are called normal in [1].

By quantifying different ways in which the structure of multiple addition can be irregular
for few summands, we determine an upper bound on k0, which only depends on the
maximal element ml of M . In the proof, we use a theorem by Erdős, Ginzburg, and Ziv
([2], Theorem 2.5).

In a further attempt, we use the shape description of kM for large k, which was given
by Nathanson in [2]. We generalise the description to smaller k and compare it to the
structures we investigated before.

As an outlook, we discuss in which ways the stated results can be generalised to higher
dimensional sets M .

[1] Vsevolod F Lev. Structure theorem for multiple addition and the frobenius problem.
journal of number theory, 58(1):79–88, 1996.

[2] Melvyn B Nathanson. Additive number theory: Inverse problems and the geometry of
sumsets, volume 165. Springer Science & Business Media, 1996.
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Monday 12:05, George Fox Lecture Theatre 2

On Combinaorial Number Theory: Sum Systems

Ambrose Law

lawa@cardiff.ac.uk

Cardiff University

Let m ∈ N, n = (n1, . . . , nm) ∈ (N + 1)m and N =
∏m

j=1 nj. A collection of sets,
A1, . . . , Am, with cardinality |Aj| = nj, is called a sum system if

m∑

j=1

Aj = {0, 1, 2, . . . , N − 1},

where set addition is done by the Minkowski sum; A + B = {a + b|a ∈ A, b ∈ B}.
The generation of consecutive integers, each term occurring uniquely, is a simple yet
potent question to ask. The structure of these sum systems provide an insight into how
multiplicative factors of N can be used to construct these additive systems. A core notion
in this study is the following combinatorial object; we call

((
j1, f1

)
,
(
j2, f2

)
, . . . ,

(
jL, fL

))
∈
(
{1, 2, . . . ,m} × (N + 1)

)L
,

where L ∈ N, a joint ordered factorisation of n if

∏

`∈Lj
f` = nj, for

(
j ∈ {1, . . . ,m}

)
,

with Lj := {` | j` = j}, and j` 6= j`−1
(
` ∈ {2, . . . , L}

)
.

This compact notation encodes the make-up of these additive systems. Alongside the
notions of arithmetic progressions, a〈b〉 := {0, a, 2a, . . . , (b − 1)a}, and F (`) :=

∏`−1
s=1 fs,

the joint ordered factorisation is utilised in the construction theorem for the sum system
component sets by

Aj =
∑

`∈Lj
F (`)〈f`〉.

The enumeration of these objects, the study of the rich patterns within their structure
and their connections to other combinatorial objects, such as difference families and
necklaces, are why these systems are of great interest and why they are the focus of my
thesis’ investigation.
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Monday 15:30, George Fox Lecture Theatre 2

Graphs on lattices

Maximilien Gadouleau

m.r.gadouleau@durham.ac.uk

Durham University

A (directed, not necessarily finite) graph G = (V,E) can be viewed as a mapping f :
2V → 2V where f(X) = N in(X) is the in-neighbourhood of a subset of vertices X ⊆ V .
A mapping f : 2V → 2V is the in-neighbourhood function of a graph if and only if it
preserves arbitrary unions: f(

⋃
X∈S X) =

⋃
X∈S f(X) for all S ⊆ 2V . Mappings over a

lattice that preserve arbitrary joins are called continuous: graphs can then be viewed as
continuous mappings over Boolean lattices. In this talk, we shall import concepts and
generalise results from graphs to so-called graphs on lattices, i.e. continuous mappings
over a complete lattice L. First, we introduce strongly acyclic graphs and prove that
they are exactly the graphs with a topological sort. Second, we introduce strongly acyclic
tournaments and show that they are transitive. Third, we generalise the equivalence
between finite topologies and pre-orders by recasting it as a result on the sets of fixed
points of graphs. Fourth, Robert’s theorem shows that a finite dynamical system with
acyclic interaction graph converges to a unique fixed point. We finally introduce the
interaction graph of a mapping φ : L→ L and generalise Robert’s theorem, thus proving
that a large class of mappings φ : L→ L converge to a unique fixed point.
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Monday 15:55, George Fox Lecture Theatre 2

Learning Small Decision Trees for Data of Low
Rank-Width

Konrad K. Dabrowski

konrad.dabrowski@newcastle.ac.uk

Newcastle University

(This talk is based on joint work with Eduard Eiben, Sebastian Ordyniak,
Giacomo Paesani and Stefan Szeider.)

A classification instance consists of a finite set E of examples (also called feature vectors).
Each example e ∈ E is a function e : feat(E) → {0, 1} which determines whether the
feature f is true or false for e. The set E is given as a partition E+]E− into positive and
negative examples. For instance, examples could represent medical patients and features
diagnostic tests; a patient is positive or negative, corresponding to whether they have
been diagnosed with a certain disease or not. The incidence graph G(E) is the bipartite
graph with features and examples being the vertices, where an example is adjacent to all
features that are true for it.

A decision tree is a rooted tree binary tree whose internal nodes are features (with one
child being negative and the other positive) and whose leaves are either 0 or 1, corre-
sponding to negative and positive, respectively. A decision tree classifies a classification
instance if we can correctly decide whether the example is positive or negative by going
from the root to the leaves, always choosing the positive or negative child of a node if the
example has that feature, or not, respectively.

E f1 f2 f3 f4
e1 ∈ E− 0 0 1 0
e2 ∈ E− 0 0 1 1
e3 ∈ E− 0 1 1 0
e4 ∈ E− 1 1 0 0
e5 ∈ E+ 1 0 0 1
e6 ∈ E+ 1 0 1 1

f1?

f4?0

01

0 1

0 1

e1
e2
e3
e4
e5
e6

f1
f2
f3
f4

Figure 1: A classification instance E = E+ ] E− with six examples and four features, a
decision tree with 5 nodes that classifies E, the incidence graph G(E).

Finding a decision tree of smallest size is an NP-hard problem. We show that we can solve
the problem in f(k)|E|p operations, where k is the rank-width of the incidence graph,
f is a computable function independent of |E| and p is a constant.

The talk will not assume any prior knowledge of graph widths, decision trees or parame-
terized complexity. I will explain the intuition behind how the algorithm works, and how
to go about constructing such dynamic programming algorithms on graphs of bounded
widths.
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Monday 16:20, George Fox Lecture Theatre 2

Large independent sets in Markov random graphs

Akshay Gupte

agupte@ed.ac.uk

School of Mathematics, University of Edinburgh

(This talk is based on joint work with Yiran Zhu.)

Finding the maximum size of an independent set in a graphG = (V,E), called the stability
number α(G), is a difficult combinatorial problem that is in general NP-hard to approx-
imate within factor |V | [H̊as99]. There have been numerous studies on bounding α(G)
asymptotically for Erdös-Rényi binomial random graphs [BE76, Fri90, GM75, Mat76],
and more so about the chromatic number χ(G), which yields a lower bound on α(G) and
its concentration [Bol88, COPS08, Hec18, Hec21, Luc91, McD90]. We continue this line
of work on asymptotic analysis of α(G) but initiate it on a new class of random graphs for
which the Erdös-Rényi graphs are a boundary condition. The edges in our random graph
are generated dynamically using a Markov process. Given n, p and a decay parameter
δ ∈ (0, 1], starting from the singleton graph ({v1}, ∅), a graph Gδ

n,p having n vertices is
generated in n − 1 iterations where at each iteration t ≥ 2, the vertex vt is added to
the graph and edges (vi, vt) for 1 ≤ i ≤ t − 1 are added as per a Bernoulli r.v. X t

i . The
success probability Pr {X t

i = 1} is equal to p for i = 1 and for i ≥ 2, it is independent of
the values of {X t

1, . . . , X
t
i−2} and is equal to Pr

{
X t
i−1 = 1

}
when X t

i−1 = 0 and equal to
δ Pr

{
X t
i−1 = 1

}
when X t

i−1 = 1. It follows that G1
n,p is the binomial random graph Gn,p,

and so the Erdös-Rényi model is a limiting case of our model.

Our main theorem is that the size of the independent sets in Gδ
n,p grows at least as rapidly

as the number of primes less than n. In particular, let π(n) denote the prime-counting
function.

Theorem 1. For every ε > 0 and δ ∈ (0, 1), we have w.h.p. that α(Gδ
n,p) ≥

2 + ε

1− δπ(n).

To prove this theorem, we establish that the average vertex degree in Gδ
n,p, which we de-

note by d(Gδ
n,p), scaled by a logarithmic factor concentrates to 2. For this concentration

result, we use Chebyshev’s inequality. Due to the absence of independence structure be-
tween r.v.’s, we cannot apply Chernoff/Hoeffding-type inequalities, and use of martingale
tail inequalities also does not help. For fixed p, this theorem shows Gδ

n,p to be more sparse
than Gn,p in terms of the number of edges.

On the upper-bounding side, we provide a tight constant c < 1 that bounds α(Gδ
n,p) ≤ c n.

Theorem 2. For every δ ∈ (0, 1), we have w.h.p. that α(Gδ
n,p) ≤

(
e−δ + δ

10

)
n.

Since all of our analysis heavily depends on δ < 1, our results don’t generalise those
known for the Erdös-Rényi graph (α(Gn,p) ≈ 2 log 1

1−p
n for fixed p), which also indicates

that a phase transition occurs in our random graph model at the boundary value δ = 1.
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Monday 11:15, George Fox Lecture Theatre 3

Enumerating pattern-avoiding inversion
sequences: an algorithmic approach based on

generating trees

Gökhan Yıldırım

gokhan.yildirim@bilkent.edu.tr

Bilkent University

(This talk is based on joint work with Toufik Mansour.)

An inversion sequence of length n is an integer sequence e = e1 · · · en such that 0 ≤ ei < i
for each 0 ≤ i ≤ n. We use In to denote the set of inversion sequences of length n.
There is a bijection between In and Sn, the set of permutations of length n. Given any
word τ of length k over the alphabet [k] := {0, 1, · · · , k − 1}, it is said that an inversion
sequence e ∈ In contains the pattern τ if there is a subsequence of length k in e that is
order isomorphic to τ ; otherwise, e avoids the pattern τ . For instance, e = 01102321 ∈ I8
avoids the pattern 0000 because there is no subsequence eiejekel of length four in e with
i < j < k < l and ei = ej = ek = el. On the other hand, e = 01102321 contains the
patterns 010 and 000 because it has subsequences −1 − − − 3 − 1 or − − − − 232−
order isomorphic to 010, and subsequence −11−−−−1 order isomorphic to 000. For a
given pattern τ , we let In(τ) denote the set of all τ -avoiding inversion sequences of length
n. Similarly, for a given set of patterns B, we set In(B) = ∩τ∈BIn(τ). Pattern-avoiding
inversion sequences systematically were studied first by Mansour and Shattuck [2] for the
patterns of length three with non-repeating letters, and by Corteel et al. [1] for repeating
and non-repeating letters. There are basically thirteen patterns of length three up to
order isomorphism P = {000, 001, 010, 100, 011, 101, 110, 021, 012, 102, 120, 201, 210}. We
provide an algorithmic approach based on generating trees for enumerating the pattern-
avoiding inversion sequences. By using this approach, we determine the generating trees
for the pattern-classes In(000, 021), In(100, 021), In(110, 021), In(102, 021), In(100, 012),
In(011, 201), In(011, 210) and In(120, 210). Then we obtain generating functions of each
class, and find enumerating formulas. Lin and Yan [3] studied the classification of the Wilf-
equivalences for inversion sequences avoiding pairs of length-three patterns and showed
that there are 48 Wilf classes among 78 pairs. We solve six open cases for such pattern
classes.

[1] S. Corteel, M.A. Martinez, C.D. Savage, M. Weselcouch, Patterns in inversion se-
quences I, Discrete Math. Theor. Comput. Sci. 18 (2), 2016.

[2] T. Mansour, M. Shattuck, Pattern avoidance in inversion sequences, Pure Math. Appl.
25 (2), 157–176, 2015.

[3] C. Yan and Z. Lin, Inversion sequences avoiding pairs of patterns. Discrete Math.
Theor. Comput. Sci. 22, no. 1, Paper No. 23, 35 pp, [2020–2021].

G. Yildirim was partially supported by Tubitak-Ardeb-120F352.
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Asymptotic Behaviour of Mesh Pattern
Containment

Jason Smith

jason.smith@ntu.ac.uk

Nottingham Trent University

(This talk is based on joint work with Dejan Govc.)

A mesh pattern is a pair (π, P ), where π is a permutation and P is a set of coordinates
in a square grid. For example, p = (12, {(0, 1), (0, 2), (1, 0)}) is a mesh pattern, which we
can depict as

.

We say a permutation τ contains a mesh pattern (π, P ) if there is an occurrence of π
in τ , in the traditional permutation pattern sense, such that when mapping (π, P ) onto
this occurrence in the picture of τ no dot of τ appears in a shaded region. For example,
the permutation 213 does not contain p (from above) because there are two occurrences
of 12 in 213, shown by the hollow red points below, but in both cases the other dot is
within one of the shaded regions:

and .

In this talk we present some results on the proportion of permutations containing certain
mesh patterns as n grows large, that is, the limit

lim
n→∞

sn(p)

n!
, (1)

where p is a mesh pattern and sn(p) is the number of permutations of length n contain-
ing p. We present some formulas for (1) when p is a mesh pattern with entire rows and
columns shaded and for particular mesh patterns of length four. An important conse-
quence of these results is that the limit can take a wide range of values between 0 and 1,
which is not true in the traditional permutation patterns setting.

[1] Dejan Govc and Jason P. Smith. Asymptotic behaviour of the containment of certain
mesh patterns. Discrete Mathematics, 345(5):112813, 2022.
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Touching representations by comparable boxes

Jane Tan
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University of Oxford

(This talk is based on joint work with Zdeněk Dvořák, Daniel Gonçalves, Abhiruk
Lahiri and Torsten Ueckerdt.)

Two boxes in Rd are comparable if one of them is a subset of a translation of the other.
The comparable box dimension of a graph G is the minimum d such that G can be
represented as a touching graph of comparable axis-aligned boxes in Rd. Having finite
comparable box dimension implies a number of nice graph properties, which leads us to
consider which graphs have such geometric representations. In this talk, we show that
comparable box representations behave well under several common operations on graphs.
This leads to a proof that every proper minor-closed class of graphs has finite comparable
box dimension.
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Monday 15:30, George Fox Lecture Theatre 3

On a new family of algebraically defined graphs

Vladislav Taranchuk

vladtar@udel.edu

University of Delaware

(This talk is based on joint work with Felix Lazebnik.)

Over the past few decades, algebraically defined graphs have gained a lot of attention
due to their applications to Turan type problems in graph theory and their connections
to finite geometries. In this talk, we discuss how the algebraically defined graphs have
been used to tackle a long standing question regarding the existence of new generalized
quadrangles. Furthermore, we demonstrate a new family of algebraically defined graphs
whose existence implies that there are potentially many new families of graphs yet to be
studied that may provide a new generalized quadrangle. This talk is based on joint work
with Felix Lazebnik (University of Delaware).
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Monday 15:55, George Fox Lecture Theatre 3

What is a (combinatorial) sandpile?

Thomas Selig

Thomas.Selig@xjtlu.edu.cn

Xi’an Jiaotong-Liverpool University

The sandpile model is a dynamic process on a graph G. At each unit of time, a grain
of sand is added to a randomly selected vertex of G. When this causes the number of
grains at that vertex to exceed a certain threshold (usually its degree), that vertex is said
to be unstable, and topples, sending grains to its neighbours in G. Of central interest in
sandpile model research are the recurrent states, those that appear infinitely often in the
long-time running of the model.

One recent fruitful research direction in sandpile research concerns the combinatorial
study of these recurrent states on specific graph families with high degree of symmetry.
In these cases, the additional structure of the underlying graph allows us to establish
bijections to related combinatorial objects which can be more easily calculated. The
seminal example is the bijection to parking functions in the complete graph case [1],
while results of this type have also been discovered for complete bipartite graphs [3],
complete split graphs [2], wheel and fan graphs [4], and many others.

In this talk, we will focus on the complete graph and wheel graph cases. We show that
in the wheel graph case, the recurrent states of the sandpile model are in bijection with
subgraphs of the cycle. Through these two illustrative examples, we will consider the
intriguing possibility of a “meta-theorem” relating combinatorial sandpiles to decorated
combinatorial structures.

[1] R. Cori and D. Rossin. On the sandpile group of a graph. Eur. J. of Comb., 21:447–
459, 2000.

[2] M. Dukes. The sandpile model on the complete split graph, Motzkin words, and
tiered parking functions. J. Comb. Theory, Ser. A, 180:15, 2021.

[3] M. Dukes and Y. Le Borgne. Parallelogram polyominoes, the sandpile model on a
complete bipartite graph, and a q, t-Narayana polynomial. J. Comb. Theory, Ser. A,
120(4):816–842, 2013.

[4] T. Selig, Combinatorial aspects of sandpile models on wheel and fan graphs: sub-
graphs of cycles and lattice paths, arXiv:2202.06487 [math.CO], 2022.
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Monday 16:20, George Fox Lecture Theatre 3

Software for finding and classifying cliques

Leonard H. Soicher

L.H.Soicher@qmul.ac.uk

Queen Mary University of London

I will describe a new hybrid GAP [1]/GRAPE [3]/C program for determining the cliques
with given vertex-weight sum in a graph whose vertices are weighted with non-zero d-
vectors of non-negative integers. This program is designed to exploit graph symmetry and
may be used for parallel computation on an HPC cluster, such as the QMUL Apocrita
cluster [2]. Some research applications will be presented.

[1] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.11.1,
2021. https://www.gap-system.org

[2] T. King, S. Butcher, and L. Zalewski, Apocrita - High perfor-
mance computing cluster for Queen Mary University of London, 2017.
https://doi.org/10.5281/zenodo.438045

[3] L. H. Soicher, The GRAPE package for GAP, Version 4.8.5, 2021.
https://gap-packages.github.io/grape
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Monday 16:45, George Fox Lecture Theatre 3

Neighbour-transitive codes in Kneser graphs

Daniel Hawtin

dan.hawtin@math.uniri.hr

Faculty of Mathematics, University of Rijeka

(This talk is based on joint work with Dean Crnković, Nina Mostarac and Andrea Švob.)

A code is a subset of the vertex set of a graph. Classically codes have been studied in
the Hamming and Johnson graphs. Here we consider codes in odd and Kneser graphs,
whose vertices are subsets of an underlying set Ω. A code C is neighbour-transitive if the
automorphism group Aut(C) of the code acts transitively on the code, and also on the
set of vertices at distance one from the code. We give several results in the direction of a
classification of neighbour-transitive codes in Kneser graphs. First, if C is a neighbour-
transitive code in a Kneser graph and Aut(C) acts intransitively on Ω then we classify
the parameters of C and give several examples. If C is a neighbour-transitive code in an
odd graph and Aut(C) acts imprimitively on Ω then we again classify the parameters of
C and give an example in each case. We provide a structural result for the case that C is
a code in a Kneser graph that is not odd and C has minimum distance at least 3. Finally,
we give a full classification of 2-neighbour-transitive codes with minimum distance at least
5 in Kneser graphs.
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Monday 11:15, George Fox Lecture Theatre 5

Recursively Counting Flows in Embedded Graphs

Maya Thompson

maya.thompson.2019@live.rhul.ac.uk

Royal Holloway, University of London

(This talk is based on joint work with Iain Moffatt.)

The number of nowhere-zero flows in a graph is a well understood problem and easily
obtained as a specialisation of the Tutte polynomial. Additionally, using the recursive
form of the Tutte polynomial we can obtain a recursion on the number of nowhere-zero
flows.

In recent work by Goodall, Litjens, Regts and Vena they found a polynomial that also
counts the number of local flows for graphs embedded in a surface. By extending their
polynomial to the family of non-cellularly embedded graphs in pseudo-surfaces, we can
express their polynomial as a recursion which naturally extends to a recursive way to
count flows in embedded graphs.

In this talk, I will show how the recursion works and use the relationship between the
topology of the surface and the number of flows to provide some intuition behind the
recursion.
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Monday 11:40, George Fox Lecture Theatre 5

A critical group for embedded graphs: working
with maps

Iain Moffatt

iain.moffatt@rhul.ac.uk

Royal Holloway, University of London

(This talk is based on joint work with Criel Merino and Steven D. Noble .)

Critical groups are finite Abelian groups associated with graphs. They are well-established
in combinatorics, closely related to the graph Laplacian and arise in several contexts such
as chip firing and parking functions. The order of the critical group of a connected graph
is equal to its number of spanning trees, a fact equivalent to Kirchhoff’s Matrix–Tree
Theorem.

How should we define critical groups for graphs embedded in surfaces, rather than for
graphs in the abstract? This is the first of two talks in which we answer this question.
(Steve Noble will give the second talk.)

In this talk the emphasis will be on topological graph theory, and the interactions of
the problem with Chumtov’s partial-duals, one-face subgraphs, and a Matrix–quasi-Tree
Theorem of Macris and Pule.

Both talks will stand alone, so don’t worry if you miss either one!
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Monday 12:05, George Fox Lecture Theatre 5

A critical group for embedded graphs: working
with delta-matroids

Steven Noble

s.noble@bbk.ac.uk

Birkbeck, University of London

(This talk is based on joint work with Criel Merino, Iain Moffatt.)

Critical groups are finite Abelian groups associated with graphs. They are well-established
in combinatorics, closely related to the graph Laplacian and arise in several contexts such
as chip firing and parking functions. The order of the critical group of a connected graph
is equal to its number of spanning trees, a fact equivalent to Kirchhoff’s Matrix–Tree
Theorem.

How should we define critical groups for graphs embedded in surfaces, rather than for
graphs in the abstract? This is the second of two talks in which we answer this question.
(The first talk was given by Iain Moffatt.)

In the first talk topological graph theory suggested a way to define a critical group for
graphs embedded in orientable surfaces. But it is far from obvious that this definition
works. In this talk we reframe our construction in terms of regular delta-matroids and
use this more general setting to finally determine the definition of a critical group.

Both talks will stand alone, so don’t worry if you miss either one!
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Monday 15:30, George Fox Lecture Theatre 5

Characterising Global Rigidity in non-Euclidean
Normed Planes via Matroid Connectivity

John Hewetson

j.hewetson2@lancaster.ac.uk

Lancaster University

(This talk is based on joint work with Sean Dewar (RICAM), Tony Nixon (Lancaster).)

A framework (G, p) is an ordered pair where G is a graph and p maps the vertices of G to
some normed space. In the 1990s, Hendrickson [1] gave necessary conditions for a generic
framework to be globally rigid in d-dimensional Euclidean space. Connelly proved that
Hendrickson’s conditions are insufficient when d ≥ 3, but in 2005 they were shown to
be sufficient when d = 2. This result combined work by Connelly [2] with a construction
of a family of graphs by Jackson and Jordán [3]. In particular, Jackson and Jordán
gave a construction of those graphs for which the corresponding (2, 3)-sparsity matroid
is connected. More recently, attention has turned to considering frameworks realised in
non-Euclidean normed spaces. In this talk we present our construction of those graphs
for which the corresponding (2, 2)-sparsity matroid is connected, and use this to give a
characterisation of globally rigid frameworks in analytic (non-Euclidean) normed planes.

[1] Bruce Hendrickson. Conditions for unique graph realizations. SIAM Journal of Com-
puting, 21(1):65–84, 1992.

[2] Robert Connelly. Generic Global Rigidity. Discrete & Computational Geometry.
Algorithms, 33:549–563, 2005.

[3] Bill Jackson and Tibor Jordán. Connected rigidity matroids and unique realizations
of graphs. Journal of Combinatorial Theory, Series B, 94(1):1–29, 2005.
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Monday 15:55, George Fox Lecture Theatre 5

Flexibility of Penrose frameworks

Jan Legerský

jan.legersky@fit.cvut.cz

Department of Applied Mathematics, Faculty of Information Technology,
Czech Technical University in Prague

(This talk is based on joint work with Sean Dewar.)

A framework, which is a (possibly infinite) graph together with a realization of its vertices
in the plane, is called flexible if it can be continuously deformed while preserving the
distances between adjacent vertices. The existence of a flexible framework for a given
graph is characterised by the existence of a so called NAC-coloring — a surjective edge
coloring by red and blue such that each cycle is either monochromatic, or contains at
least two red and two blue edges.

In this talk, we focus on infinite frameworks obtained as 1-skeleta of parallelogram tilings.
We brace some of the parallelograms, namely, they are not allowed to change their shape
during a flex. We show that such a structure is flexible if and only if the graph admits
a special type of NAC-coloring, called cartesian. Moreover, if this framework is n-fold
rotationally symmetric, we can again decide its flexibility by the existence a cartesian
NAC-coloring invariant under the symmetry. In particular, we can apply these results to
frameworks obtained from (5-fold symmetric) Penrose tilings, see Figure 1.

Figure 1: A finite piece of an infinite 5-fold symmetric Penrose tiling with a NAC-coloring
certifying its flexibility: the filled rhombi preserve their shapes along the flex.
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Monday 16:20, George Fox Lecture Theatre 5

Symmetric contact systems of segments,
pseudotriangulations and inductive constructions

for corresponding surface graphs.

James Cruickshank

james.cruickshank@nuigalway.ie

National University of Ireland, Galway

(This talk is based on joint work with Bernd Schulze (Lancaster University).)

We prove symmetric analogues of two well known theorems in combinatorial geometry.
The first is a result of Thomassen concerning contact graphs of collections of line seg-
ments in the plane (see Section 2.2 of [3] for a description of this result) . The second is
due to Haas et al. and characterises graphs that have embeddings as pointed pseudotri-
angulations in the plane (see [2]). The symmetric setting gives rise naturally to graphs
that are embedded in non-planar surface. The main technical result that we use is a new
inductive construction of an appropriate class of surface graphs that is common to both
situations.

[1] J. Cruickshank, B. Schulze. Symmetric contact systems of segments, pseudotriangulations
and inductive constructions for corresponding surface graphs. 2021 preprint available at:
https://arxiv.org/abs/2006.10519

[2] R. Haas, D. Orden, G. Rote, F. Santos, B. Servatius, H. Servatius, D. Souvaine, I. Streinu, and
W. Whiteley. Planar minimally rigid graphs and pseudo-triangulations. Comput. Geom., 31(1-
2):31–61, 2005.

[3] P. Hliněný. Classes and recognition of curve contact graphs. J. Combin. Theory Ser. B, 74(1):87–103,
1998.
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Tuesday 10:30, George Fox Lecture Theatre 1

BOUNDS RELATED TO THE EDGE-LIST
CHROMATIC AND TOTAL CHROMATIC

NUMBERS OF A SIMPLE GRAPH

A. J. W. Hilton

a.j.w.hilton@reading.ac.uk

University of Reading

(This talk is based on joint work with R. Mary Jeya Jothi and M. Henderson.)

We show that for a simple graph G, c′(G) ≤ ∆(G) + 2 where c′(G) is the choice index
(or edge-list chromatic number) of G, and ∆(G) is the maximum degree of G.

As a simple corollary of this result, we show that the total chromatic number χT (G)
of a simple graph satisfies the inequality χT (G) ≤ ∆(G) + 4 and that the total choice
number cT (G) also satisfies this inequality.

We also relate these bounds to the Hall index and the Hall condition index of a sim-
ple graph, and to the total Hall number and the total Hall condition number of a simple
graph.
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Tuesday 10:55, George Fox Lecture Theatre 1

Monochromatic linear forests

Louis DeBiasio

debiasld@miamioh.edu

Miami University

(This talk is based on joint work with András Gyárfás and Gabor Sárközy.)

We prove that in every r-coloring of Kn there is a monochromatic linear forest on 3
⌊

n
r+2

⌋

vertices, which is best possible when r + 2 divides n. This generalizes the 2-color case
which was solved by Burr and Roberts in 1974. One of the main ingredients in our proof
is an estimate on the size of non-uniform covering designs.
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Tuesday 11:20, George Fox Lecture Theatre 1

Monochromatic components with many edges

Mykhaylo Tyomkyn

tyomkyn@kam.mff.cuni.cz

Charles University

(This talk is based on joint work with David Conlon and Sammy Luo.)

Given an r-edge-coloring of the complete graph Kn, what is the largest number of edges in
a monochromatic connected component? This natural question has only recently received
the attention it deserves, with work by two disjoint subsets of the authors resolving it for
the first two special cases, when r = 2 or 3. Here we introduce a general framework for
studying this problem and apply it to fully resolve the r = 4 case, showing that such a
coloring always yields a monochromatic component with at least 1

12

(
n
2

)
edges, where the

constant 1
12

is optimal only when the coloring matches a certain construction of Gyárfás.
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Tuesday 11:45, George Fox Lecture Theatre 1

Balancing connected colourings of graphs

Youri Tamitegama

tamitegama@maths.ox.ac.uk

University of Oxford

(This talk is based on joint work with Freddie Illingworth, Emil Powierski, Alex Scott.)

In a seminal result on subgraph packing, Tutte [2] and Nash-Williams [3] characterise fi-
nite graphs containing two edge-disjoint spanning trees. It is natural to ask whether such
graphs admit packings with additional properties, such as ‘balanced’ packings. Specifi-
cally, does a graph which is precisely the union of two edge-disjoint spanning trees have
a blue/red edge-colouring such that the colour degrees at each vertex differ by at most a
constant c? The first finite upper bound on c is due to Hörsch [1]. In this talk, we sketch
the proof of an improved bound of c ≤ 4. If time allows, we will discuss extending this
bound to blue/red connected colourings of arbitrary graphs containing two edge-disjoint
spanning trees.

[1] F. Hörsch, Globally balancing spanning trees, arXiv:2110.13726, 2021

[2] W. T. Tutte, On the problem of decomposing a graph into n connected factors,
Journal of the London Mathematical Society, 1, (1):221–230, 1961

[3] C. Nash-Williams, Edge-disjoint spanning trees of finite graphs, Journal of the Lon-
don Mathematical Society, 1, (1):445–450, 1961
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Tuesday 10:30, George Fox Lecture Theatre 2

(Random) trees of intermediate volume growth
exist

Martin Winter

martin.h.winter@warwick.ac.uk

University of Warwick

(This talk is based on joint work with George Kontogeorgiou.)

For every sufficiently nice increasing function g : R≥0 → R≥0 that grows at least linearly
and at most exponentially we construct a tree T with uniform volume growth g(r), that
is,

C1 · g(r/4) ≤ |Bv(r)| ≤ C2 · g(4r), for all r ≥ 0,

where Bv(r) denotes the ball of radius r centered at a vertex v. In particular, this yields
examples for trees of uniform intermediate volume growth.

This constructions can be extended to yield unimodular random trees of uniform interme-
diate growth (answering a question by Benjamini), as well as triangulations of the plane
with the same wide range of growth behaviors.
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Tuesday 10:55, George Fox Lecture Theatre 2

Subgraphs of Semi-random Graphs

Natalie Behague

nbehague@uvic.ca

University of Victoria

(This talk is based on joint work with Trent Marbach, Pawe l Pra lat and Andrzej
Ruciński.)

The semi-random graph process can be thought of as a one player game. Starting with an
empty graph on n vertices, in each round a random vertex u is presented to the player,
who chooses a vertex v and adds the edge uv to the graph. Given a graph property, the
objective of the player is to force the graph to satisfy this property in as few rounds as
possible.

We will consider the property of constructing a fixed graph G as a subgraph of the semi-
random graph. Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman and Stojacovič
proved that the player can asymptotically almost surely construct G given n1–1/dω rounds,
where ω is any function tending to infinity with n and d is the degeneracy of the graph
G. We prove a matching lower bound. I will talk about this result, and also discuss a
generalisation of our approach to semi-random hypergraphs. I will finish with some open
questions.
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Tuesday 11:20, George Fox Lecture Theatre 2

Maximum running times for graph bootstrap
percolation processes

Patrick Morris

pmorrismaths@gmail.com

Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

(This talk is based on joint work with David Fabian and Tibor Szabó.)

Given a fixed graph H and an n-vertex graph G the H-bootstrap percolation process of H
on G is defined to be the sequence of graphs Gi, i ≥ 0 which starts with G0 := G and in
which Gi+1 is obtained from Gi by adding every edge that completes a copy of H. This
process is an example of a cellular automata and has been extensively studied since being
introduced by Bollobás [2] in 1968. Recently, Bollobás raised the question of determining
the maximum running time of this process, over all choices of n-vertex graph G. Here, the
running time of the process is number of steps t the process takes before stabilising, that
is, when Gt = Gt+1. Recent papers of Bollobás–Przykucki–Riordan–Sahasrabudhe [3],
Matzke [4] and Balogh–Kronenberg–Pokrovskiy–Szabó [1] have addressed the case when
H is a clique, and determined the asymptotics of this maximum running time for all
cliques apart from K5. Here, we initiate the study of the maximum running time for other
graphs H and provide a survey of our new results in this direction. We study several key
examples, giving precise results for trees and cycles, and giving general results towards
understanding how the maximum running time of the H-bootstrap percolation process
depends on properties of H, in particular exploring the relationship between this graph
parameter and the degree sequence of H. Many interesting questions remain and along
the way, we indicate some directions for future research.

[1] J. Balogh, G. Kronenberg, A. Pokrovskiy, and T. Szabó. The maximum length of
Kr-Bootstrap Percolation. Proceedings of the American Mathematical Society, To
appear.

[2] B. Bollobás. Weakly k-saturated graphs. In Beiträge zur Graphentheorie (Kollo-
quium, Manebach, 1967), pages 25–31, 1968.

[3] B. Bollobás, M. Przykucki, O. Riordan, and J. Sahasrabudhe. On the maximum
running time in graph bootstrap percolation. Electronic Journal of Combinatorics,
24(2), 2017.

[4] K. Matzke. The saturation time of graph bootstrap percolation. arXiv preprint
arXiv:1510.06156, 2015.
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Tuesday 10:30, George Fox Lecture Theatre 3

Size-Ramsey numbers of graphs with maximum
degree three

Kalina Petrova

kalina.petrova@inf.ethz.ch

ETH Zürich

(This talk is based on joint work with Nemanja Draganić.)

The size-Ramsey number r̂(H) of a graph H is the smallest number of edges a (host)
graph G can have, such that for any red/blue coloring of G, there is a monochromatic
copy of H in G. Recently, Conlon, Nenadov and Trujić showed that if H is a graph on
n vertices and maximum degree three, then r̂(H) = O(n8/5), improving upon the bound
of n5/3+o(1) by Kohayakawa, Rödl, Schacht and Szemerédi. In this work, we show that
r̂(H) ≤ n3/2+o(1). While the previously used host graphs were vanilla binomial random
graphs, we prove our result using a novel host graph construction. We also discuss why
our bound is a natural barrier for the existing methods.
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Tuesday 10:55, George Fox Lecture Theatre 3

Ramsey equivalence for asymmetric pairs

Pranshu Gupta

pranshu.gupta@tuhh.de

Hamburg University of Technology, Institute of Mathematics, Hamburg, Germany

(This talk is based on joint work with Simona Boyadzhiyska, Dennis Clemens, and
Jonathan Rollin.)

A graph F is a Ramsey graph for a pair (G,H) of graphs if any red/blue-coloring of the
edges of F yields a copy of G with all edges colored red or a copy of H with all edges
colored blue. Two pairs of graphs are called Ramsey equivalent if they have the same
collection of Ramsey graphs. The symmetric setting, that is, the case G = H, received
considerable attention which constituted the open question whether there are connected
graphs G and G′ such that (G,G) and (G′, G′) are Ramsey equivalent. We study the
asymmetric version of this question and identify several non-trivial families of Ramsey
equivalent pairs of connected graphs.

Certain pairs of stars provide a first, albeit trivial, example of Ramsey equivalent pairs of
connected graphs. Our results characterize all Ramsey equivalent pairs of stars. The rest
of the work focuses on pairs of the form (T,Kt), where T is a tree and Kt is a complete
graph. We show that, if T belongs to a certain family of trees, including all non-trivial
stars, then (T,Kt) is Ramsey equivalent to a family of pairs of the form (T,H), where
H is obtained from Kt by attaching smaller disjoint cliques to some of its vertices. On
the other hand, we prove that for many other trees T , including all odd-diameter trees,
(T,Kt) is not equivalent to any such pair, even not to the pair (T,Kt ·K2), where Kt ·K2

is a complete graph Kt with a single edge attached.

83



Tuesday 11:20, George Fox Lecture Theatre 3

Fixed-point cycles: extremal combinatorics meets
social choice theory

Simona Boyadzhiyska

s.boyadzhiyska@fu-berlin.de

Freie Universität Berlin

(This talk is based on joint work with Benjamin Aram Berendsohn and László Kozma.)

Given an edge-labeling of the complete bidirected graph Kn with functions from [d] to
itself, we call a cycle in Kn a fixed-point cycle if composing the labels of its edges results in
a map that has a fixed point; the labeling is fixed-point-free if no fixed-point cycle exists.
In this talk, we will consider the following question: for a given d, what is the largest value
of n for which there exists a fixed-point-free edge-labeling of Kn with functions from [d]
to itself? This question was raised in a recent paper of Chaudhury, Garg, Mehlhorn,
Mehta, and Misra studying a problem in social choice theory. As it turns out, it is also
closely related to the problem of finding zero-sum cycles in edge-labeled digraphs, recently
considered by Alon and Krivelevich and by Mészáros and Steiner. We will discuss these
connections and present some new results related to both problems.
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Tuesday 11:45, George Fox Lecture Theatre 3

Ramsey theory on homogeneous structures

Natasha Dobrinen

natasha.dobrinen@du.edu

University of Denver

Ramsey theory on relational structures has been investigated ever since Ramsey proved
his seminal theorem for colorings of k-sized sets of natural numbers. While a multitude of
classes of finite structures have been shown to possess the Ramsey property, such as finite
linear orders and finite ordered graphs, analogues for infinite structures have proven more
elusive: Initiated by Sierpiński in the 1930’s, it was not until D. Devlin’s work in 1979
that the Ramsey theory of the rationals as a linearly ordered structure was completely
understood; the Ramsey theory of the Rado graph was only completed in 2006 by work
of Laflamme, Sauer, and Vuksanovic. Methods for Ramsey theory on finite structures are
generally not sufficient for discovering Ramsey properties of their infinite homogeneous
counterparts, i.e., Fräıssé limits, because upon well-ordering a homogeneous structure, the
interplay between this ordering and the relations persists in every isomorphic substructure
leading to unavoidable colorings with many colors.

This talk follows up on the speaker’s talk at the 2019 BCC on the Ramsey theory of
Henson graphs. Methods discussed then (using coding trees, set theory, and some model
theoretic ideas) have paved the way to a fruitful expansion of results for various classes
of homogeneous structures, including binary relational free-amalgamation classes and
the generic partial order. This talk will be a condensed version of the speaker’s 2022
ICM talk, providing an overview of the current state of Ramsey theory of homogeneous
structures, built on works of various author combinations from among Balko, Barbosa,
Chodounský, Coulson, El-Zahar, Erdős, Hajnal, Hubička, Komjáth, Konečný, Laflamme,
Larson, Mašulović, Nešetřil, Nguyen Van Thé, Patel, Pósa, Rödl, Sauer, Vena, Zucker,
and the speaker.
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Tuesday 10:30, George Fox Lecture Theatre 5

Position sets in graphs

James Tuite

james.tuite@open.ac.uk

Open University

(This talk is based on joint work with E. Thomas, U. Chandran, G. Di Stefano, G.
Erskine, N. Salia, C. Tompkins, S. Klavžar, P. Neethu, M. Thankachy.)

The general position problem for graphs was inspired by a puzzle of Dudeney and the
general position subset selection problem in discrete geometry; it asks for the largest set
S of vertices in a graph G such that no shortest path of G contains ≥ 3 vertices of S. In
this talk, we shall discuss some extremal questions for variants of this problem, including
equilateral sets (sets of vertices at equal distance) and monophonic position sets (sets
of vertices of a graph G such that no induced path of G contains ≥ 3 vertices of S),
including some intriguing connections to Turán and Ramsey problems.
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Tuesday 10:55, George Fox Lecture Theatre 5

h∗-vectors of edge polytopes and connections to
the greedoid polynomial

Lilla Tóthmérész

lilla.tothmeresz@ttk.elte.hu

MTA-ELTE Egerváry Research Group

(This talk is based on joint work with Tamás Kálmán.)

The edge polytope of a directed graph G is defined as

QG = Conv{1h − 1t |
−→
th ∈ E(G) } ⊂ RV (G).

An interesting special case is if the graph G is bidirected; that is, it is obtained from an
undirected graph by substituting each edge with two oppositely directed edges. In this
case, the polytope is called a symmetric edge polytope. The volume and h∗-polynomial
of the symmetric edge polytope recently received considerable interest due to their nice
properties and relationship to the Kuramoto model in physics.

The dimension of the edge polytope is typically |V (G)| − 1, but it can be |V (G)| − 2.
The latter is true exactly for those digraphs, where each cycle has the same number of
edges pointing in the two cyclic directions. We call these digraphs semi-balanced. The
edge polytopes of semi-balanced digraphs appear as facets of symmetric edge polytopes.

We give various formulas for the h∗-polynomials of symmetric edge polytopes, and edge
polytopes of semi-balanced digraphs as generating functions of certain activities for cer-
tain spanning trees. We present an open question about which formulas of this type are
true.

Also, we show that the greedoid polynomial of a planar Eulerian branching greedoid is
equivalent to the h∗-polynomial of the edge polytope of a semi-balanced digraph. Indeed,
it turns out that for a planar Eulerian digraph, its dual is a semi-balanced digraph, and
the greedoid polynomial of the branching greedoid is equivalent to the h∗-polynomial
of the edge polytope of the dual graph. This result can be generalized to any Eulerian
digraph if one suitably defines the edge polytope of a regular oriented matroid. This
gives a geometric embedding of the dual complex of an Eulerian branching greedoid. It
also yields a geometric proof for the root-independence of the greedoid polynomial of an
Eulerian digraph.

[1] Kálmán, Tamás and Lilla Tóthmérész, h∗-vectors of graph polytopes using activities
of dissecting spanning trees, arXiv:2203.17127, 2022.

[2] Lilla Tóthmérész, A geometric proof for the root-independence of the greedoid poly-
nomial of Eulerian branching greedoids , arXiv:2204.12419, 2022.
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Tuesday 11:20, George Fox Lecture Theatre 5

Cut Complexes

Marija Jelić Milutinović

marijaj@matf.bg.ac.rs

University of Belgrade, Faculty of Mathematics, Serbia

(This talk is based on joint work with Margaret Bayer, Mark Denker, Rowan Rowlands,
Sheila Sundaram, and Lei Xue.)

The talk presents our project which is studying two new classes of simplical complexes
constructed from graphs, called cut complexes and total cut complexes. For a graph G =
(V,E), a set S ⊂ V is a separating set of size |S|, if the induced subgraph G[V \ S] (on
the vertex set V \S) is disconnected. Define the following simplicial complexes associated
with a graph G and an integer k ≥ 2:

• k-cut complex ∆k(G): the simplicial complex whose facets are the separating sets of G
of size (n− k);

• total k-cut complex ∆t
k(G): the simplicial complex whose facets are the separating sets

of size (n− k), with an additional property that their complements are independent sets.

A motivation for this project comes from a result which shows an interesting path leading
from graph theory, through squarefree monomial ideals, and then (by using Stanley-
Reisner theory) to the combinatorial structure of simplicial complexes, as presented in
the following theorem.

Theorem 1 (Fröberg 1990 [2], Eagon and Reiner 1996 [1]). ∆2(G) is shellable if and
only if G is chordal (no induced cycle of size greater than 3).

We present some results about the combinatorics and topology of complexes ∆2(G),
and various results about the structure of ∆k(G) for k ≥ 3. For example, we give some
sufficient conditions on graphs such that their k-cut complexes are shellable, and show
the effects of common graph operations (disjoint union, join and wedge product) on the
shellability of cut complexes. Also, we present combinatorial properties and homotopy
types for the cut complexes of the most important classes of graphs (complete bipartite
graphs, cycles, forests, grid graphs, etc.). At the end of the talk, we will briefly mention
some similar results for total cut complexes ∆t

k(G).

[1] John A. Eagon and Victor Reiner. Resolutions of Stanley-Reisner rings and Alexan-
der duality. J. Pure Appl. Algebra, 130(3):265–275, 1998.

[2] Ralf Fröberg. On Stanley-Reisner rings. In Topics in algebra, Part 2 (Warsaw, 1988),
volume 26 of Banach Center Publ., pages 57–70. PWN, Warsaw, 1990.
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Tuesday 11:45, George Fox Lecture Theatre 5

Erdős-Ko-Rado for flags in spherical buildings

Sam Mattheus

sam.mattheus@vub.be

Vrije Universiteit Brussel

(This talk is based on joint work with Jan De Beule and Klaus Metsch.)

Over the last few years, Erdős-Ko-Rado theorems have been found in many different
geometrical contexts including for example sets of subspaces in projective [2] or polar
spaces [3]. A recurring theme throughout these theorems is that one can find sharp upper
bounds by applying the Delsarte-Hoffman coclique bound to a matrix belonging to the
relevant association scheme. In the aforementioned cases, the association schemes turn
out to be commutative, greatly simplifying the matter. However, when we do not consider
subspaces of a certain dimension but more general flags, we lose this property. In this talk,
we will explain how to overcome this problem, using a result originally due to Brouwer
[1]. This result, which has seemingly been flying under the radar so far, allows us to derive
upper bounds for certain flags in projective spaces and general flags in polar spaces and
exceptional geometries. We will show how Chevalley groups, buildings, Iwahori-Hecke
algebras and representation theory tie into this story and discuss their connections to the
theory of non-commutative association schemes.

[1] Andries Brouwer. The eigenvalues of oppositeness graphs in buildings of spherical type. Combina-
torics And Graphs. 531 pp. 1-10 (2010).

[2] Chris Godsil & Karen Meagher. Erdős-Ko-Rado theorems: algebraic approaches. Cambridge Univer-
sity Press, Cambridge (2016).

[3] Valentina Pepe, Leo Storme & Frédéric Vanhove. Theorems of Erdős-Ko-Rado type in polar spaces.
J. Combin. Theory Ser. A. 118, 1291-1312 (2011).
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Wednesday 10:30, George Fox Lecture Theatre 1

Embedding problems in sparse expanders

Nemanja Draganić

nemanja.draganic@math.ethz.ch

ETH Zürich

(This talk is based on joint work with Rajko Nenadov and Michael Krivelevich.)

We develop a general embedding method based on the Friedman-Pippenger tree embed-
ding technique and its algorithmic version, enhanced with a roll-back idea allowing a
sequential retracing of previously performed embedding steps. We use this method to
obtain the following results.

• We show that the size-Ramsey number of logarithmically long subdivisions of
bounded degree graphs is linear in their number of vertices, settling a conjecture of
Pak (2002).

• We give a deterministic, polynomial time online algorithm for finding vertex-disjoint
paths of a prescribed length between given pairs of vertices in an expander graph.
Our result answers a question of Alon and Capalbo (2007).

• We show that relatively weak bounds on the spectral ratio λ/d of d-regular graphs
force the existence of a topological minor of Kt where t = (1 − o(1))d. We also
exhibit a construction which shows that the theoretical maximum t = d+ 1 cannot
be attained even if λ = O(

√
d). This answers a question of Fountoulakis, Kühn and

Osthus (2009).
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Wednesday 10:55, George Fox Lecture Theatre 1

On an extremal problem for multigraphs

Victor Falgas-Ravry

victor.falgas-ravry@umu.se

Ume̊a University

(This talk is based on joint work with A. Nicholas Day, Vojtěch Dvořák, Adva Mond,
Andrew Treglown and Victor Souza.)

An (n, s, q)-graph is an n-vertex multigraph in which every s-set of vertices supports at
most q edges, counting multiplicities. The Turán-type problem of determining how large
the sum of the edge multiplicities in an (n, s, q)-graph can be has been studied since the
1990s, and was asymptotically resolved by Füredi and Kündgen [3].

More recently, Mubayi and Terry [4, 5] posed the problem of determining the maximum
possible value of the product of the edge multiplicities in an (n, s, q)-graph, with mo-
tivation coming from applications of container theory. Product-maximisation in these
locally sparse multigraphs has a rather different flavour, and some exotic features such as
extremal constructions in which parts contain a transcendental proportion of the vertices.

In this talk I will survey what is known about the Mubayi–Terry problem and present
some recent progress in the area.

[1] A. Nicholas Day, Victor Falgas-Ravry and Andrew Treglown, Extremal problems for
multigraphs, Journal of Combinatorial Theory Series B 154 (2022), 1–48.

[2] Victor Falgas-Ravry, On an extremal problem for locally sparse multigraphs, preprint
(2021), arXiv:2101.03056.

[3] Zoltán Füredi and André Kündgen, Turán problems for integer-weighted graphs,
Journal of Graph Theory 40(4) (2002), 195–225.

[4] Dhruv Mubayi and Caroline Terry, Extremal theory of locally sparse multigraphs,
SIAM Journal on Discrete Mathematics 34(3) (2020), 1922–1943.

[5] Dhruv Mubayi, Dhruv and Caroline Terry, An extremal graph problem with a tran-
scendental solution, Combinatorics, Probability & Computing 28(2) (2019), 303–324.
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Wednesday 11:20, George Fox Lecture Theatre 1

On the Anti-Ramsey Threshold for non-balanced
graphs

Pedro Araújo

araujo@cs.cas.cz

Institute of Computer Science of the Czech Academy of Sciences

(This talk is based on joint work with Táısa Martins, Let́ıcia Mattos, Walner Mendonça,
Luiz Moreira, Guilherme O. Mota.)

For graphs G,H, we write G
rb−→ H if any proper edge-coloring of G contains a rainbow

copy of H, i.e., a copy where no color appears more than once. Kohayakawa, Konstadinidis

and the last author proved that the threshold for G(n, p)
rb−→ H is at most n−1/m2(H).

Previous results have matched the lower bound for this anti-Ramsey threshold for cycles
and complete graphs with at least 5 vertices.

Kohayakawa, Konstadinidis and the last author also presented an infinite family of graphs
H for which the anti-Ramsey threshold is asymptotically smaller than n−1/m2(H). In this
paper, we devise a framework that provides a richer and more complex family of such
graphs that includes all the previously known examples.
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Wednesday 11:45, George Fox Lecture Theatre 1

Canonical Graph Decompositions via Coverings

Jan Kurkofka

j.kurkofka@bham.ac.uk

University of Birmingham

(This talk is based on joint work with Reinhard Diestel, Raphael W. Jacobs, Paul
Knappe.)

We present a canonical way to decompose finite graphs into highly connected local parts.
The decomposition depends only on an integer parameter whose choice sets the intended
degree of locality. The global structure of the graph, as determined by the relative position
of these parts, is described by a coarser model. This is a simpler graph determined entirely
by the decomposition, not imposed.

The model and decomposition are obtained as projections of the tangle-tree structure of
a covering of the given graph that reflects its local structure while unfolding its global
structure. In this way, the tangle theory from graph minors is brought to bear canonically
on arbitrary graphs, which need not be tree-like.

Our theorem extends to locally finite quasi-transitive graphs, and in particular to locally
finite Cayley graphs. It thereby offers a canonical decomposition for finitely generated
groups into local parts, whose relative structure is displayed by a graph.

[1] J. Carmesin, Local 2-separators, JCTB 2022.

[2] R. Diestel, R.W. Jacobs, P. Knappe, J. Kurkofka, Canonical Graph Decompositions
via Coverings, in preparation.
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Wednesday 10:30, George Fox Lecture Theatre 2

Some progress on Woodall’s Conjecture on
packing dijoins in digraphs

Ahmad Abdi

a.abdi1@lse.ac.uk

London School of Economics and Political Science

(This talk is based on joint work with Gérard Cornuéjols and Michael Zlatin.)

Let D = (V,A) be a digraph. A dicut is the set of arcs in a cut where all the arcs
cross in the same direction, and a dijoin is a set of arcs whose contraction makes D
strongly connected. It is known that every dicut and dijoin intersect. Suppose every dicut
has size at least k. Woodall’s Conjecture, an important open question in Combinatorial
Optimization, states that there exist k pairwise disjoint dijoins. We make a step towards
resolving this conjecture by proving that A can be decomposed into two sets A1 and A2,
where A1 is a dijoin, and A2 intersects every dicut in at least k−1 arcs. We prove this by
a Decompose, Lift, and Reduce (DLR) procedure, in which D is turned into a sink-regular
(k, k+ 1)-bipartite digraph. From there, by an application of Matroid Optimization tools,
we prove the result.

The DLR procedure works more generally for weighted digraphs, and exposes an intrigu-
ing number-theoretic aspect of Woodall’s Conjecture. In fact, under natural number-
theoretic conditions, Woodall’s Conjecture and a weighted extension of it are true. By
pushing the barrier here, we expose strong base orderability as a key notion for tackling
Woodall’s Conjecture.
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Wednesday 10:55, George Fox Lecture Theatre 2

Hamilton Cycles on Dense Regular Digaphs and
Oriented Graphs

Mehmet Akif Yıldız

m.a.yildiz@uva.nl

University of Amsterdam

(This talk is based on joint work with Allan Lo and Viresh Patel.)

A (directed) cycle in a (directed) graph traversing all the vertices exactly once is called
a Hamilton cycle. We prove that for every ε > 0 there exists n0 = n0(ε) such that every
regular oriented graph on n > n0 vertices and degree at least (1/4 + ε)n has a Hamilton
cycle. This establishes an approximate version of a conjecture of Jackson from 1981. We
also establish a result related to a conjecture of Kühn and Osthus about the Hamiltonicity
of regular directed graphs with suitable degree and connectivity conditions.
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Wednesday 11:20, George Fox Lecture Theatre 2

On Diameter and Size in Graphs and Digraphs

Sonwabile Mafunda

smafunda@uj.ac.za

University of Johannesburg

(This talk is based on joint work with Peter Dankelmann.)

In a connected, finite graph or a strong, finite digraph G of order n, the distance dG(u, v)
between two vertices u and v is the length of a shortest u − v path in G. The diameter
diam(G) of G is the largest of the distances between all pairs. The (vertex)-connectivity
κ(G) and edge-connectivity λ(G) of G are the minimum number of vertices and edges,
respectively, whose removal results in a graph that is not connected or a digraph that is
not strong.
Bounds on diameter in terms of order, size and vertex-connectivity were given by Ore
in 1968 for graphs and the extension to strong digraphs by Dankelmann in 2021. In the
late 80’s Caccettta and Smyth strengthened these bounds for edge- connectivity λ ≥ 8
instead of vertex-connectivity. Sharp bounds on the diameter for the remaining values of
λ, i.e, for 2 ≤ λ ≤ 7 were given by Dankelmann in 2021 who also extended these results
to Eulerian digraphs.
In this talk, we present these existing results and the extension to the results of Caccetta
and Smyth, and Dankelmann to new results for bipartite graphs with close consideration
of results presented by Mukwembi on order, size, diameter and minimum degree in 2013.
Finally we will discuss also the extension of these new results for bipartite graphs to
Eulerian bipartite digraphs.
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Wednesday 11:45, George Fox Lecture Theatre 2

Small and Disjoint Quasi-Kernels

Yacong Zhou

yacong.zhou.2021@live.rhul.ac.uk

Department of Computer Science, Royal Holloway University of London

(This talk is based on joint work with Jiangdong Ai, Stefanie Gerke and Gregory Gutin.)

A quasi-kernel of a directed graph D is an independent set Q ⊆ V (D) such that for
every vertex v ∈ V (D)\Q, there exists a directed path with one or two arcs from v to
a vertex u ∈ Q. In 1976, Erdős and Sźekely conjectured that every sink-free digraph
D = (V,A) has a quasi-kernel of size at most |V |/2. In this paper, we prove a slightly
stronger result which implies that the conjecture holds for the anti-claw-free digraphs. In
addition, we show that this conjecture holds for sink-free digraphs with a quasi-kernel Q
that satisfies that for all u ∈ Q, N+(u)∩N−(u) 6= ∅. For sink-free kernel-perfect, critical
kernel-imperfect, unicyclic, and a class of semicomplete compositions, we show a stronger
result. Namely, graphs belonging to these classes have a pair of disjoint quasi-kernels.
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Wednesday 10:30, George Fox Lecture Theatre 3

Optimal Resistor Networks

J. Robert Johnson

r.johnson@qmul.ac.uk

Queen Mary, University of London

(This talk is based on joint work with Mark Walters.)

A graph can be regarded as an electrical network by replacing each edge with a 1 ohm
resistor. This viewpoint has applications to some diverse areas of mathematics including
random walks, partitioning rectangles into squares, and statistical design theory.

A statistical application motivates our main problem. Given a graph on n vertices with
m edges, how small can the average resistance between pairs of vertices be?

There are two very plausible extremal constructions – graphs like a star, and graphs
which are close to regular – with the transition between them occuring when the average
degree is 3. However, surprisingly, there are significantly better constructions for a range
of average degree including average degree near 3. We will discuss this behaviour and
other results and open questions related to this problem.
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Wednesday 10:55, George Fox Lecture Theatre 3

Tight Hamilton cycles in uniformly
dense k-uniform hypergraphs

Simón Piga

s.piga@bham.ac.uk

University of Birmingham

(This talk is based on joint work with Pedro Araújo and Mathias Schacht.)

We study tight Hamilton cycles in quasirandom hypergraphs with minimum degree at
least Ω(nk−1). For 3-uniform hypergraphs and different notions of quasirandomness these
type of problems were studied previously by Aigner-Horev and Levy, Gan and Han, and
the authors. We generalise those results for k-uniform hypergraphs.

For one notion of quasirandomness and under a minimum degree condition of Ω(nk−1), we
obtain an asymptotically optimal density threshold that enforces the existence of a tight
Hamilton cycle. Moreover, we prove that under the same minimum degree conditions, for
stronger notions of quasirandomness, any arbitrarily small density is already enough to
ensure the existence of such a cycle. Additionally, for weaker notions, we provide examples
of k-uniform hypergraphs with quasirandom density almost 1 and subject to the same
minimum degree condition, that do not contain tight Hamilton cycles.
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Wednesday 11:20, George Fox Lecture Theatre 3

Permutation limits at infinitely many scales

David Bevan

david.bevan@strath.ac.uk

University of Strathclyde

In this talk we will investigate convergence of sequences of permutations at different scales.
Let Sn denote the set of permutations of length n. An occurrence of pattern π ∈ Sk in
permutation σ ∈ Sn (with k 6 n) is a k-element subset of indices 1 6 i1 6 . . . 6
ik 6 n whose image σ(i1) . . . σ(ik) under σ is order-isomorphic to π. We say that such
an occurrence has width ik − i1 + 1. Given a real number f ∈ [k, n], let νf (π, σ) be the
number of occurrences of π in σ having width no greater than f . Then the density of π
in σ at scale f , denoted ρf (π, σ), is νf (π, σ)

/(
n
k

)
f
, where

(
n
k

)
f

is the number of k-element

subsets of [n] of width at most f .

Given a scaling function f = f(n) � 1, an infinite sequence (σj)j∈N of permutations
with |σj| → ∞ is convergent at scale f if ρf (π, σj) = ρf(|σj |)(π, σj) converges for every
pattern π. That is, there exists an infinite vector Ξ ∈ [0, 1]S (where S is the set of all
permutations), which we call a scale limit, such that ρf (π, σj) → Ξπ for all π ∈ S. The
set of possible scale limits does not depend on the scale:

Theorem 1. If Ξ is any scale limit and f � n, then there exists a sequence of permuta-
tions convergent to Ξ at scale f .

If f � g, then convergence at scale f is independent of convergence at scale g:

Theorem 2. Let {ft : t ∈ N} be any countably infinite set of scaling functions totally
ordered by �, and for each t ∈ N, let Ξt be any scale limit. Then there exists a sequence
of permutations which converges to Ξt at scale ft for each t ∈ N.

In the case of global convergence, when f = n, one can represent the limit by a permuton,
a probability measure on the unit square with uniform marginals. What can we say when
f � n? A scale limit cannot always be represented by a permuton. However, it is believed
that certain probability distributions over permutons (that is, random permutons) suffice:

Question 3. Can every scale limit be represented by a random permuton? If so, which
random permutons are scale limits?

A sequence of permutations is scalably convergent if it converges to the same limit (a
scalable limit) at every scale f � n. A permuton is tiered if it can be partitioned into
a countable number of horizontal tiers [0, 1] × [a, b] such that in each tier the mass is
uniformly distributed either on the whole tier or else along one of its diagonals. It seems
likely that tiered permutons are sufficient to characterise scalable limits:

Question 4. Can every scalable limit be represented by a random tiered permuton? If so,
which random tiered permutons are scalable limits?

[1] David Bevan. Independence of permutation limits at infinitely many scales. JCTA 186:105557, 2022.
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Wednesday 10:30, George Fox Lecture Theatre 5

Embedding K3,3 and K5 on orientable surfaces

Andrei Gagarin

gagarina@cardiff.ac.uk

School of Mathematics, Cardiff University, Cardiff, United Kingdom

(This talk is based on joint work with William L. Kocay, University of Manitoba,
Winnipeg, Canada)

The Kuratowski graphs K3,3 and K5 are well-known fundamental non-planar graphs that
characterize planarity. We are interested in obtaining all their distinct 2-cell embeddings
on orientable surfaces. Counting distinct 2-cell embeddings of these two graphs on ori-
entable surfaces was previously done by Mull [1] and Mull et al. [2], using Burnside’s
Lemma and automorphism groups of the graphs, without actually constructing the em-
beddings. The 2-cell embeddings of K3,3 and K5 on the torus are well-known. We obtain
all 2-cell embeddings of K3,3 and K5 on the double torus, using a constructive approach,
starting with their common minor Θ5, which is a multi-graph consisting of two vertices
and a set of five parallel edges between them. First, we prove that there are exactly
three distinct 2-cell embeddings of Θ5 on the double torus (see Figure 1). Then, we show
that there is a unique non-orientable 2-cell embedding of K3,3, and 14 orientable and 17
non-orientable 2-cell embeddings of K5 on the double torus. These are explicitly obtained
by recursively expanding from minors. Therefore we confirm the numbers of embeddings
obtained by Mull [1] and Mull et al. [2] for the double torus. As a consequence, several
new polygonal representations of the double torus are presented. Using an exhaustive
search, rotation systems for the one-face embeddings of K5 on the triple torus are also
found.
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Figure 1: The 2-cell embeddings of Θ5 on the double torus.

[1] B.P. Mull, Enumerating the orientable 2-cell imbeddings of complete bipartite
graphs, J. Graph Theory 30 (1999), 77–90.

[2] B.P. Mull, R.G. Rieper, A.T. White, Enumerating 2-cell imbeddings of connected
graphs, Proc. Amer. Math. Soc. 103(1) (2008), 321–330.
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Wednesday 10:55, George Fox Lecture Theatre 5

Braced Triangulations and Rigidity

Eleftherios Kastis

l.kastis@lancaster.ac.uk

Lancaster Unicersity

This talk is based on joint work with J. Cruickshank, D. Kitson and B. Schulze.

Triangulations of the 2-sphere play an important role in rigidity theory of bar-joint frame-
works. Gluck has shown that generic realisations of these graphs as bar-joint frameworks
in the 3-dimensional Euclidean space are minimally rigid.

In this talk, we consider triangulated spheres with a fixed number of additional edges
(braces). We shall show that for any b ∈ N there exists an inductive construction, based
on vertex splitting, of triangulations with b braces, having finitely many base graphs. In
particular, we establish a bound for the maximum size of a base graph with b braces that
is linear in b. For b = 1 and b = 2 we determine the list of base graphs explicitly.

Applying the above results we show that doubly braced triangulations are (generically)
minimally rigid in two distinct geometric contexts arising from a hypercylinder in R4 and
a class of mixed norms on R3.
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Wednesday 11:20, George Fox Lecture Theatre 5

Unique Realisations of Outerplanar Graphs

Bill Jackson

b.jackson@qmul.ac.uk

Queen Mary University of London

(This talk is based on joint work with James Cruickhank and Shin-Ichi Tanigawa.)

A braced outerplanar graph is any graph which can be obtained by adding extra edges to
an outerplanar graph. We show that a convex realisation of a braced maximal outerplanar
graph is uniquely defined by its edge lengths if and only if it is 3-connected.
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Wednesday 11:45, George Fox Lecture Theatre 5

When is a rod configuration infinitesimally rigid?

Signe Lundqvist

signe.lundqvist@umu.se

Ume̊a University

(This talk is based on joint work with Klara Stokes and Lars-Daniel Öhman.)

A rod configuration is a realisation of a hypergraph as points and straight lines in the
plane, where the lines behave as rigid bodies. Tay and Whiteley conjectured that the
infinitesimal rigidity of rod configurations realising 2-regular hypergraphs depends only on
the generic rigidity of body-and-joint frameworks realising the same hypergraph [3]. This
conjecture is known as the molecular conjecture because of its applications to molecular
chemistry.

In 1989, Whiteley proved a version of the molecular conjecture for hypergraphs of arbi-
trary degree that can be realised as independent body-and-joint frameworks in the plane
[4]. In 2008, Jackson and Jordán proved the molecular conjecture in the plane, and Katoh
and Tanigawa proved it in arbitrary dimension in 2011 [1, 2].

In this talk, we will see that the infinitesimal rigidity of a sufficiently generic rod con-
figuration realising an arbitrary hypergraph depends only on the generic rigidity of an
associated graph, which we call a cone graph. This result can be seen as a generalisation
of Whiteley’s version of the molecular conjecture to arbitrary hypergraphs.

[1] B. Jackson and T. Jordán. Pin-collinear body-and-pin frameworks and the molecular
conjecture. Discrete Comput. Geom. 40:2 (2008) 258–278.

[2] N. Katoh and S. Tanigawa. A proof of the molecular conjecture. Discrete Comput.
Geom. 45:4 (2011) 647–700.

[3] T.S. Tay and W. Whiteley. Recent advances in the generic rigidity of structures.
Structural Topology. 9 (1984) 31–38.

[4] W. Whiteley. A matroid on hypergraphs, with applications in scene analysis and
geometry. Discret. Comput. Geom. An International Journal of Mathematics and
Computer Science. 4 (1989) 278–301.

[5] A. Nixon, B. Schulze and W. Whiteley. Rigidity through a Projective Lens. Applied
Sciences 11:24 (2021)
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Thursday 10:30, George Fox Lecture Theatre 1

Dirac-type results for tilings and coverings in
ordered graphs

Andrea Freschi

axf079@student.bham.ac.uk

University of Birmingham

(This talk is based on joint work with Andrew Treglown.)

A (vertex) ordered graph or labelled graph H on h vertices is a graph whose vertices have
been labelled with {1, . . . , h}. In recent years there has been a significant effort to develop
both Turán and Ramsey theories in the setting of vertex ordered graphs (see for example
[1, 3, 4, 5]). Motivated by this line of research, Balogh, Li and Treglown [2] recently
initiated the study of Dirac-type problems for ordered graphs. In particular, they focused
on the problem of determining the minimum degree threshold for forcing a perfect H-
tiling in an ordered graph for any fixed ordered graph H (recall that a perfect H-tiling in
a graph G is a collection of vertex-disjoint copies of H covering all the vertices in G). In
this talk we present a result which builds up on the ideas from [2] and fully resolve such
problem. This provides an ordered graph analogue of the seminal tiling theorem of Kühn
and Osthus [Combinatorica 2009]. We also determine the asymptotic minimum degree
threshold for forcing an H-cover in an ordered graph (for any fixed ordered graph H).

[1] M. Balko, J. Cibulka, K. Král and J. Kynčl, Ramsey numbers of ordered graphs,
Electr. J. Combin. 27 (2020), P1.16.

[2] J. Balogh, L. Li and A. Treglown, Tilings in vertex ordered graphs, J. Combin.
Theory Ser. B 155 (2022), 171–201.

[3] D. Conlon, J. Fox, C. Lee and B. Sudakov, Ordered Ramsey numbers, J. Combin.
Theory Ser. B 122 (2017), 353–383.

[4] J. Pach and G. Tardos, Forbidden paths and cycles in ordered graphs and matrices,
Israel J. Math. 155 (2006), 359–380.

[5] G. Tardos, Extremal theory of vertex or edge ordered graphs, in Surveys in Combi-
natorics 2019 (A. Lo, R. Mycroft, G. Perarnau and A. Treglown eds.), London Math.
Soc. Lecture Notes 456, 221–236, Cambridge University Press, 2019.
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Thursday 10:55, George Fox Lecture Theatre 1

Erdős’s conjecture on the pancyclicity of
Hamiltonian graphs

David Munhá Correia

david.munhacanascorreia@math.ethz.ch

ETH Zürich

(This talk is based on joint work with Nemanja Draganić and Benny Sudakov.)

An n-vertex graph is Hamiltonian if it contains a cycle covering all its vertices and it is
pancyclic if it contains cycles of all lengths from 3 up to n. In 1973, Bondy stated his
celebrated meta-conjecture that any non-trivial condition which implies that a graph is
Hamiltonian should also imply that it is pancyclic (up to a certain collection of simple
exceptional graphs). As an example, consider the classical Dirac’s theorem stating that
every n-vertex graph with minimum degree at least n/2 is Hamiltonian. Strengthening
this, Bondy himself showed that every such graph is in fact either pancyclic or isomorphic
to the complete bipartite graph Kn/2,n/2.

Bondy’s meta-conjecture deals with conditions for Hamiltonicity which imply pancyclic-
ity. In a similar fashion, one can ask the following natural question: Let G be a Hamilto-
nian graph; under which assumptions can we guarantee that G is also pancyclic? Indeed,
also in the 1970s, Erdős put forward the problem below.

Question 1. Given an n-vertex Hamiltonian graph with independence number α(G) ≤ k,
how large does n have to be in terms of k in order to guarantee that G is pancyclic?

He proved that it is enough to have n = Ω(k4) and conjectured that already n = Ω(k2)
should be enough - a simple construction shows that this is best possible. Since then there
have been several improvements of Erdős’s initial result – by Keevash and Sudakov who
proved that n = Ω(k3) is enough, by Lee and Sudakov who improved it to n = Ω(k7/3),
and finally by Dankovics who showed that n = Ω(k11/5) suffices. We resolve the conjecture
of Erdős, showing that if a Hamiltonian graph G has n = Ω(k2) vertices and α(G) ≤ k,
then G is pancyclic.

106



Thursday 11:20, George Fox Lecture Theatre 1

Copies of oriented trees with many leaves in
tournaments

Alistair Benford

AXB1433@bham.ac.uk

University of Birmingham

(This talk is based on joint work with Richard Montgomery.)

Given an n-vertex oriented tree T , how large must a tournament G be, in order to
guarantee G contains a copy of T? A strengthening of Sumner’s conjecture poses that, if
T has k leaves, then it is enough for G to have (n+ k− 1) vertices. While this conjecture
has been recently confirmed in the case where k is fixed and n is allowed to grow large,
it remains open for trees with a large proportion of leaves. In this talk, we confirm
this conjecture holds approximately, even in the many-leaves case. We also discuss how
the techniques behind this approximate result extend to a different setting in which we
consider the maximum degree of T , instead of the number of leaves.
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Thursday 11:45, George Fox Lecture Theatre 1

Cycle decompositions in k-uniform hypergraphs

Allan Lo

s.a.lo@bham.ac.uk

University of Birmingham

(This talk is based on joint work with Simón Piga and Nicolás Sanhueza-Matamala.)

We show that k-uniform hypergraphs on n vertices whose codegree is at least (2/3+o(1))n
can be decomposed into tight cycles, subject to the trivial divisibility condition that every
vertex degree is divisible by k. As a corollary, we show that such hypergraphs also have
a tight Euler tour answering a question of Glock, Joos, Kühn and Osthus.
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Thursday 10:30, George Fox Lecture Theatre 2

Distinct dot products and arithmetic growth

Oliver Roche-Newton

o.rochenewton@gmail.com

Johannes Kepler Universität, Linz, Austria

(This talk is based on joint work with Brandon Hanson and Steven Senger.)

A variant of the Erdős distinct distance problem is to consider the minimum number of
dot products determined by a set of N points in the plane. A simple incidence geometric
argument proves that there are at least N2/3 such dot products. I will discuss joint work
with Hanson and Senger which improves this bound.
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Thursday 10:55, George Fox Lecture Theatre 2

Partition and density regularity for polynomial
systems

Jonathan Chapman

jonathan.chapman@bristol.ac.uk

University of Bristol

(This talk is based on joint work with Sam Chow.)

A system of polynomial equations is called partition regular if every finite colouring
of the positive integers produces monochromatic solutions to the system. A system is
called density regular if it has solutions over every set of integers with positive upper
density. A classical theorem of Rado characterises partition regularity for linear systems,
whilst Szemerédi’s theorem classifies all density regular linear systems. In this talk, I will
report on recent developments on the classification of partition and density regularity for
sufficiently non-singular systems of polynomial equations.
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Thursday 11:20, George Fox Lecture Theatre 2

Equidistribution of high rank boolean
polynomials over Fp

Thomas Karam

tk542@cam.ac.uk

University of Cambridge

(This talk is partly based on joint work with Timothy Gowers.)

Let d ≥ 2 be a positive integer. For a polynomial P in several variables over a field F and
with total degree d, we say that the rank rkP of P is the smallest nonnegative integer
k such that there exist polynomials Q1, . . . , Qk, R1, . . . , Rk all with degree at most d− 1
such that we can write

P = Q1R1 + · · ·+QkRk

In the case F = Fp, we will generalise a result of Green and Tao about equidistribution
of high rank polynomials to the case where the range of the variables is restricted to an
arbitrary subset of F.

Theorem 1. Let p be a prime integer, let 2 ≤ d < p be a positive integer and let S be
an arbitrary non-empty subset of Fp. There exists a function Ap,d : R+ → R+ such that
for every ε > 0, if P is a polynomial over Fp with degP = d and such that there exists
t ∈ F∗p satisfying

|Ex∈Sn exp(2πi
p
tP (x))| ≥ ε

then there exists a polynomial P0 identically constant on Sn such that rk(P−P0) ≤ Ap,d(ε).

To prove this result we will use two black boxes: the equivalence between the partition
rank pr and the analytic rank for tensors, as well as the following result of the author.

Proposition 2. Let d ≥ 2, n ≥ 1 be positive integers and let E be the set of (x1, . . . , xd) ∈
[n]d such that there exist distinct i, j ∈ [d] with xi = xj. There exists a function Gd : N→
N such that if l ≥ 1 is a positive integer and T : [n]d → F is an order d tensor (over an
arbitrary field F) such that

prT (X1 × · · · ×Xd) ≤ l

is satisfied for all d-tuples (X1, . . . , Xd) of pairwise disjoint subsets of [n], then we can
find an order d tensor V supported inside E such that

pr(T + V ) ≤ Gd(l)
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Thursday 11:45, George Fox Lecture Theatre 2

Bounds on the estimation error of
syndrome-based channel parameter estimation by

linear codes

Yuichiro Fujiwara

yuichiro.fujiwara@chiba-u.jp

Chiba University

(This talk is based on joint work with Yu Tsunoda.)

It is known that a well-designed binary linear code allows for efficiently and accurately
estimating the cross-over probability of the binary symmetric channel by simply looking
at the syndrome weight before even attempting error correction. However, while various
promising simulation results and heuristic analyses have been provided in the literature,
as far as the authors are aware, there are no rigorous arguments for why it is so accurate.
Here, for given 0 < δ < 1, we prove a tail bound on the probability Pr(|p̂− p| ≥ δp) that
the estimation p̂ of the cross-over probability p by the syndrome weight deviates from
the true value by at least δp. When a regular low-density parity-check code is used for
estimation, our bound shows that Pr(|p̂ − p| ≥ δp) tends to 0 exponentially fast as the
code length tends to infinity, giving a mathematical explanation of why the estimation
method works well. The proof is combinatorial and relies on McDiarmid’s inequality.
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Thursday 10:30, George Fox Lecture Theatre 3

More on subsystems of Netto triple systems

Bridget S. Webb

bridget.webb@open.ac.uk

The Open University

(This talk is based on joint work with Darryn E. Bryant and Barbara M. Maenhaut.)

The Netto triple systems are a class of Steiner triple systems having order q = pn where
n ≥ 1, p is prime, and q ≡ 7 (mod 12), and there is a unique (up to isomorphism)
Netto triple system for each such order. For q 6= 7, their full automorphism group acts
transitively on unordered pairs of points but not on ordered pairs of points, and they are
the only Steiner triple systems with this property.

Netto triple systems are block-transitive, cyclic, uniform, anti-mitre, and are block-regular
if and only if q ≡ 7 or 31 (mod 36). The elements of a field of order q form the point
set of a Netto triple system of order q, and the blocks can be generated from the triple
{0, 1, α} where α is a primitive sixth root of unity.

We confirm Robinson’s 1975 conjecture that prime order Netto triple systems have no non-
trivial subsystems, prove that cubic Netto triple systems have only expected subsystems
and investigate when Netto triple systems have subsystems other than the expected ones.
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Thursday 10:55, George Fox Lecture Theatre 3

An introduction to DPDFs and EPDFs

Laura M. Johnson

lj68@st-andrews.ac.uk

University of St. Andrews

(This talk is based on joint work with Sophie Huczynska.)

A Disjoint Difference Family (DDF) is a combinatorial structure formed from a collection
of disjoint subsets of a group G, in which each group element occurs precisely lambda
times as a difference between two elements of the same subset. An External Difference
Family (EDF) is similarly formed by disjoint subsets of G, with each element of G oc-
curring exactly lambda times as a difference between elements of disjoint subsets. Both
combinatorial structures have been widely studied and have applications to cryptography.

We call a DDF comprising of just one subset a Difference Set. Difference Sets have a
well-studied partial analogue; namely a Partial Difference Set (PDS). In spite of the fact
that we can consider a Difference Set to be a restricted type of DDF, the partial ana-
logues of DDFs have not previously been classified. EDFs are again a similar structure
with no partial analogue. In this talk, I will introduce a partial analogue for both of these
structures and I will set up a cyclotomic framework which may be used to find examples
of these structures.
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Thursday 11:20, George Fox Lecture Theatre 3

Coefficientwise total positivity of some
combinatorial matrices

Tomack Gilmore

t.gilmore1@lancaster.ac.uk

Lancaster University

(This talk is based on joint work with X. Chen, B. Deb, A. Dyachenko, A. D. Sokal.)

A (finite or infinite) matrix with real entries is totally positive if all of its minors are
nonnegative. If we equip the polynomial ring R[x] (where x = {xi}i≥0 is a set of alge-
braic indeterminates) with the coefficientwise partial order (that is, we say P ∈ R[x] is
nonnegative if and only if P is a polynomial with nonnegative coefficients), then a matrix
with entries belonging to R[x] is coefficientwise totally positive if all of its minors are
polynomials with nonnegative coefficients.

In this talk I will present some conjectures and results concerning the matrix

T (a, c, d, e, f, g) = (Tn,k)n,k≥0

with entries that satisfy a three-term linear recurrence:

Tn,k = (a(n− k) + c)Tn−1,k−1 + (dk + e)Tn−1,k + (f(n− 2) + g)Tn−2,k−1

for n ≥ 1 with initial conditions T0,k = δk0 and T−1,k = 0.

Under certain specialisations the entries of T (a, c, d, e, f, g) count a variety of natural
combinatorial objects with respect to different statistics. On the other, this matrix ap-
pears, and in some cases can be shown to be, coefficientwise totally positive. I will discuss
how classical combinatorial techniques can be employed to prove such total positivity
results.

[1] X. Chen, B. Deb, A. Dyachenko, T. Gilmore, and A. D. Sokal, Coefficientwise total
positivity of some matrices defined by linear recurrences, Séminaire Lotharingien
de Combinatoire 85B (2021), Proceedings of the 33rd International Conference on
Formal Power Series and Algebraic Combinatorics.
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Thursday 10:30, George Fox Lecture Theatre 5

Quotient graphs of symmetrically rigid
frameworks

Sean Dewar

sean.dewar@ricam.oeaw.ac.at

Johann Radon Institute for Computational and Applied Mathematics (RICAM)

(This talk is based on joint work with Georg Grasegger, Eleftherios Kastis and Anthony
Nixon.)

A natural problem in combinatorial rigidity theory concerns the determination of the
rigidity or flexibility of bar-joint frameworks in Rd that admit some non-trivial sym-
metry. When d = 2 there is a large literature on this topic. In particular, it is typical
to quotient the symmetric graph by the group and analyse the rigidity of symmetric,
but otherwise generic frameworks, using the combinatorial structure of the appropriate
group-labelled quotient graph. However, mirroring the situation for generic rigidity, little
is known combinatorially when d ≥ 3. Nevertheless in the periodic case, a key result
of Borcea and Streinu [1] characterises when a quotient graph can be lifted to a rigid
periodic framework in Rd. We develop an analogous theory for symmetric frameworks in
Rd. The results obtained apply to all finite and infinite 2-dimensional point groups, and
then in arbitrary dimension they concern a wide range of infinite point groups, sufficiently
large finite groups and groups containing translations and rotations. For the case of finite
groups we also derive results concerning the probability of assigning group labels to a
quotient graph so that the resulting lift is symmetrically rigid in Rd.

Figure 1: A graph with 4-fold rotational symmetry (left) and its quotient graph (right).

[1] C. S. Borcea, I. Streinu, Minimally rigid periodic graphs, Bulletin of the London
Mathematical Society 43(6), 2011 pp. 1093–1103. doi: 10.1112/blms/bdr044.
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Thursday 10:55, George Fox Lecture Theatre 5

Rigidity of Symmetric Frameworks on the
Cylinder

Joseph Wall

j.wall@lancaster.ac.uk

Lancaster University

(This talk is based on joint work with Anthony Nixon, Bernd Schulze.)

A bar-joint framework (G, p) is the combination of a finite simple graph G = (V,E)
and a placement p : V → Rd. The framework is rigid if the only edge-length preserving
continuous deformations of the vertices arise from isometries of the space. This talk
combines two recent extensions of the generic theory of rigid and flexible graphs by
considering symmetric frameworks in R3 restricted to move on a surface. We give the
necessary combinatorial conditions for a symmetric framework on the cylinder to be
isostatic (i.e. minimally infinitesimally rigid) under any finite point group symmetry. In
two of the 5 possible cases, half turn and inversion symmetry, these conditions are then
shown to be sufficient under suitable genericity assumptions, and precise combinatorial
descriptions of symmetric isostatic graphs in these contexts are given.
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Thursday 11:20, George Fox Lecture Theatre 5

Global Area Rigidity of Generic Hypergraph
Frameworks

Jack Southgate

jos3@st-andrews.ac.uk

University of St Andrews

(This talk is based on joint work with Louis Theran (academic supervisor).)

Connelly and Gortler, Healy and Thurston showed that global Euclidean rigidity of graph
frameworks is a generic property, ie. either all generic frameworks of a graph are globally
rigid or none are. In this talk we cover the basics of area rigidity, highlighting its sim-
ilarities and differences with Euclidean rigidity. We then use the family of hypergraphs
defined by triangulations of the 2-sphere to demonstrate that global area rigidity is not
a generic property.
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Thursday 11:45, George Fox Lecture Theatre 5

Fast algorithms for global rigidity

Csaba Király

cskiraly@cs.elte.hu

MTA-ELTE Egerváry Research Group, Eötvös Loránd Research Network (ELKH) and
Department of Operations Research, ELTE Eötvös Loránd University

(This talk is based on joint work with András Mihálykó.)

A (bar-joint) framework (a collection of rigid bars in Rd connected by joints that allow
full spherical motion) is rigid in Rd, if it cannot be deformed continuously into another
non-isomorphic framework. It is globally rigid if no non-isomorphic framework can be
given with the same bar lengths. In certain cases (for example, for generic frameworks
in the plane or on the cylinder), both the rigidity and the global rigidity of a framework
depend only on the underlying graph. In these cases rigidity is often characterized by
some sparsity properties of the underlying graph, and global rigidity is characterized by
redundant rigidity (where the graph remains rigid after deleting an arbitrary edge) and
2- or 3-vertex-connectivity.

In this talk we first show how the global rigidity of a graph G = (V,E) can be checked
in O(|V |2) time by showing how the above mentioned combinatorial properties can be
checked efficiently. As it is known that the 2- or 3-connectivity of a graph can be checked in
linear time, the main aim of this algorithm is the testing of redundant rigidity in O(|V |2)
time. We consider this problem on a more general structure, called the (k, `)-sparsity
matroid that encapsulates rigidity for several spaces. We also show how the components
of the sparsity matroid of a graph G = (V,E) can be calculated in O(|V |2) time.

The combinatorial characterizations of global rigidity allow us to consider the following
as a combinatorial problem (global rigidity augmentation problem): given a rigid graph
G = (V,E), find a minimum size edge set F so that G + F is globally rigid.

In the second part of this talk, we sketch an O(|V |2) algorithm to solve the global rigidity
augmentation problem and its extension for (k, `)-sparsity matroids. The algorithm uses
the above mentioned algorithm which calculates the components of the (k, `)-sparsity
matroid as a subroutine. Besides this, it uses the algorithm for redundant rigidity aug-
mentations of minimally rigid (hyper)graphs from [2], the (mostly algorithmic) proof of
the min-max theorem given in [1] for the global rigidity augmentation problem, and ef-
ficient algorithms which calculates the structures of the 2- or 3-connected blocks of a
graph.

[1] Cs. Király and A. Mihálykó. Globally rigid augmentation of rigid graphs. Technical
Report TR-2021-04, Egerváry Research Group, Budapest, 2021. egres.elte.hu.
To appear in SIAM J. Disc. Math.

[2] Cs. Király and A. Mihálykó. Sparse graphs and an augmentation problem. Math.
Program., 192(1):119–148, 2022.
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Friday 11:25, George Fox Lecture Theatre 1

Graphs with large minimum degree and no small
odd cycles are three-colourable

Nora Frankl

nfrankl@renyi.hu

Alfred Renyi Institute of Mathematics

(This talk is based on joint work with Julia Böttcher, Domenico Mergoni, Olaf Parczyk
and Jozef Skokan.)

Let F be a fixed family of graphs. The homomorphism threshold of F is the infimum of
those α for which there exists an F -free graph H(F , α), such that every F -free graph on
n vertices of minimum degree αn is homomorphic to H(F , α). Letzter and Snyder showed
that the homomorphism threshold of {C3, C5} is 1/5. They found explicit graphs H(F , α)
for α ≥ 1

5
+ ε, which were in addition 3-colourable. Thus, their result also implies that

{C3, C5}-free graphs of minimum degree at least (1
5

+ ε)n are 3-colourable. For longer cy-
cles, Ebsen and Schacht showed that the homomorphism threshold of {C3, C5, . . . , C2`−1}
is 1

2`−1
. However, their proof does not imply a good bound on the chromatic number

of {C3, . . . , C2`−1}-free graphs of minimum degree ( 1
2`−1

+ ε)n. Answering a question of
Letzter and Snyder, we prove that such graphs are 3-colourable.
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Friday 11:50, George Fox Lecture Theatre 1

Unavoidable patterns in 2-edge colorings of the
complete bipartite graph

Denae Ventura

dventura@im.unam.mx

Institute of Mathematics UNAM

(This talk is based on joint work with Dr. Adriana Hansberg.)

Ramsey’s theorem states that, given a graph G and a large enough integer n, any col-
oring of the edges of Kn contains a monochromatic copy of G. Typical Ramsey results
guarantee the existence of monochromatic substructures. However, the search for non-
monochromatic substructures is interesting as well. It is known that any 2-coloring of the
edges of a large enough complete graph with enough edges in each color contains at least
one of two patterns, either a colored K2t where one color class induces a Kt or a colored
K2t where one color class induces two disjoint Kt’s. This result has given rise to many
interesting problems involving balanceability (which seeks structures with equal propor-
tions of color) and omnitonality (which seeks structures with all possible proportions of
color). In this talk, we will discuss the unavoidable patterns found when we color the
edges of a large enough complete bipartite graph with two colors and their significance
on the search of balanceable and omnitonal structures.
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Friday 13:50, George Fox Lecture Theatre 1

Subgraph densities in Kr-free graphs

Ervin Győri

gyori@renyi.hu

Rényi Institute of Mathematics, Budapest

(This talk is based on joint work with Andrzej Grzesik, Nika Salia and Casey
Tompkins.)

For graphs H and F , the generalized Turán number ex(n,H, F ) is defined to be the
maximum number of (not necessarily induced) copies of H in an n-vertex graph G which
does not contain F as a subgraph. Estimating ex(n,H, F ) for various pairs H and F
has been a central topic of research in extremal combinatorics. The case when H and
F are both cliques was settled early on by Zykov and independently by Erdős. The
problem of maximizing 5-cycles in a triangle-free graph was a long-standing open problem.
The problem was finally settled by Grzesik and independently by Hatami, Hladký, Král,
Norine and Razborov. In the case when the forbidden graph F is a triangle and H is any
bipartite graph containing a matching on all but at most one of its vertices, ex(n,H, F )
was determined exactly by Győri, Pach and Simonovits in 1991. More recently there
has been extensive work on the topic following the work of Alon and Shikhelman, who
introduced the extremal function ex(n,H, F ) for general pairs H and F .

For a given n and a double star Sa,b, Győri, Wang and Woolfson proved that there exists
n′ such that for all triangle-free graphs G on n the number of copies of Sa,b in G is at
most the number of copies of it in Kn′,n−n′ plus an error term o(na+b+2).

Recently Lidický and Murphy proposed the following natural conjecture.

Conjecture 1 (Lidický, Murphy). Let H be a graph and let r be an integer such that
r > χ(H). Then there exist integers n1, n2, . . . , nr−1 such that n1 + n2 + · · · + nr−1 = n
and we have

ex(n,H,Kr) = H(Kn1,n2,...,nr−1).

Unfortunately, the conjecture is not true in general. We present some counterexamples
in the talk. However, it is natural to consider the following modification of Conjecture 1.

Conjecture 2. Let G be a graph with diameter at most 2r − 2 with χ(G) < r, then
ex(n,G,Kr) is asymptotically achieved by a blow-up of Kr−1.

As a first step towards Conjecture 2 for r = 3, we proved it for all bipartite graphs of
radius 2 and some other bipartite graphs.
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Friday 14:15, George Fox Lecture Theatre 1

Edge Contraction and Forbidden Induced Graphs

Hany Ibrahim

hhasan@hs-mittweida.de

University of Applied Sciences Mittweida

A graph G is H-free if any subset of V (G) does not induce a subgraph of G that is
isomorphic to H. Given a graph H, we present sufficient and necessary conditions for
a graph G such that G/e is H-free for any edge e in E(G). Afterwards, we use these
conditions to characterize forests, claw-free, 2K2-free, C4-free, C5-free, and split graphs.
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Friday 11:25, George Fox Lecture Theatre 2

Maximising Minimum Reachability in Temporal
Graphs

Laura Larios-Jones

laura.larios-jones@glasgow.ac.uk

University of Glasgow

Temporal graphs consist of an underlying graph (G,E) and an assignment t of timesteps
to edges that specifies when each edge is active. This allows us to model spread through a
network which is time-sensitive. We will consider a fixed set of timesteps for a given graph
and reorder them to optimise reachability. Previous work has mainly explored minimis-
ing spread for applications such as epidemiology. Here, we will be looking at the opposite
problem of increasing movement through a graph. Maximising spread can be useful in
situations where we would like information or resources to be shared efficiently, such as
advertising or even vaccine rollout.

In particular, our goal is to reorder the timesteps assigned to the edges in our graph such
that the minimum number of vertices reachable from any starting vertex is maximised.
We will discuss optimal ordering in specific graphs and features of more general graphs
which allow for high minimum reachability.

124



Friday 11:50, George Fox Lecture Theatre 2

Classifying Subset Feedback Vertex Set
for H-Free Graphs

Giacomo Paesani

g.paesani@leeds.ac.uk

School of Computing, University of Leeds, Leeds, UK

Daniël Paulusma, Paweł Rzążewski

In the Feedback Vertex Set problem, we aim to find a small set S of vertices in a
graph intersecting every cycle. The Subset Feedback Vertex Set problem requires
S to intersect only those cycles that include a vertex of some specified set T . We also
consider the Weighted Subset Feedback Vertex Set problem, where each vertex u
has weight w(u) > 0 and we ask that S has small weight. By combining known NP-
hardness results with new polynomial-time results we prove full complexity dichotomies
for Subset Feedback Vertex Set and Weighted Subset Feedback Vertex Set
for H-free graphs, that is, graphs that do not contain a graph H as an induced subgraph.

[1] G. Paesani, Daniël Paulusma and Paweł Rzążewski, Classifying Subset Feedback
Vertex Set for H-Free Graphs, Proc. WG 2022, Lecture Notes in Computer Science,
to appear.
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Friday 13:50, George Fox Lecture Theatre 2

A random Hall-Paige conjecture

Alp Müyesser

alp.muyesser.21@ucl.ac.uk

University College London

(This talk is based on joint work with Alexey Pokrovskiy.)

A complete mapping of a group G is a bijection φ : G → G such that x 7→ xφ(x) is also
bijective. The Hall-Paige conjecture from 1955 states that G has a complete mapping
whenever the product of all elements of G is contained in the commutator subgroup of G.
The conjecture is a theorem since 2009 thanks to breakthrough work of Wilcox, Evans,
and Bray.

We will discuss a generalisation of the Hall-Paige conjecture for random subsets of groups.
The resulting statement applies only to large groups, but is flexible enough to address
many longstanding problems in combinatorial group theory. A sample application is a
characterisation of (large) groups whose elements can be ordered so that the product of
each consecutive pair of elements is distinct, which settles a problem of Evans. In this
talk, we will sketch how Evans’ problem can be addressed using the randomised version
of the Hall-Paige conjecture.
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Friday 14:15, George Fox Lecture Theatre 2

Pattern avoiding binary trees

Namrata

namrata@warwick.ac.uk

University of Warwick

(This talk is based on joint work with Torsten Mütze.)

Pattern-avoidance is a fundamental topic in combinatorics, and in this work we consider
pattern-avoidance in Catalan structures, specifically, in binary trees. The study of pattern-
avoidance in binary trees was initiated by Rowland [3], who considered contiguous tree
patterns, i.e., in a pattern match, the tree pattern appears as an induced subtree of
the host tree; see Figure (a). Dairyko, Pudwell, Tyner and Wynn [1] considered non-
contiguous tree patterns, i.e., in a pattern match, the tree pattern appears as a minor of
the host tree; see Figure (b). tree pattern host trees

Q T ′

T ′ contains Q

T ′′

T ′′ avoids Q

non-contiguous
patterns

P T

T contains P

T ′

T ′ avoids P

contiguous
patterns

(a)

(b)

R T ′′′

T ′′′ contains R

T ′
mixed
patterns

(c)

T ′ avoids R

We generalize the two aforementioned types of tree
patterns, by considering an arbitrary mix of both
types, i.e., each individual edge of the tree pat-
tern can be considered either contiguous or non-
contiguous, independently of the other edges; see
Figure (c).

Our first result is a bijection between the set of
binary trees with n nodes that avoid any given
set of such generalized tree patterns, and a set of
pattern-avoiding permutations of length n. This
uses mesh patterns introduced by Brändén and
Claesson [4] and generalizes the earlier bijection
of Pudwell, Scholten, Schrock and Serrato [2] for
non-contiguous tree patterns.

Our main contribution is to apply this bijection to
provide exhaustive generation algorithms for a large variety of pattern-avoiding binary
trees, based on our permutation language framework [5].

[1] Dairyko, M. and Pudwell, L. and Tyner, S. and Wynn, C. Non-contiguous pattern
avoidance in binary trees. Electron. J. Combin., 19(3), 2012.

[2] Pudwell, L. and Scholten, C. and Schrock, T. and Serrato, A. Noncontiguous Pattern
Containment in Binary Trees. Int. Schol. Res. Not., Paper 316535, 9 pp, 2014.

[3] Rowland, E. S. Pattern avoidance in binary trees. J. Combin. Theory Ser. A., 117(6),
2010.

[4] Brändén, P. and Claesson, A. Mesh patterns and the expansion of permutation statis-
tics as sums of permutation patterns. Electron. J. Combin., 18(2), 2011.

[5] Hartung, E. and Hoang, H. P. and Mütze, T. and Williams, A. Combinatorial gener-
ation via permutation languages. Trans. Amer. Math. Soc., 375(4):2255–2291, 2022.
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Friday 11:25, George Fox Lecture Theatre 3

Monochromatic arithmetic progressions in binary
words associated with pattern sequences

Bartosz Sobolewski

bartosz.sobolewski@uj.edu.pl

Faculty of Mathematics and Computer Science, Jagiellonian University

Let ev(n) denote the number of occurrences of a pattern v in the binary expansion of
n ∈ N. In the talk we consider monochromatic arithmetic progressions in the class of
words (ev(n) mod 2)n≥0 over {0, 1}, which includes the Thue–Morse word t (for v = 1)
and a variant of the Rudin–Shapiro word r (for v = 11). So far, the problem of exhibiting
long progressions and finding an upper bound on their length has mostly been studied
for t and certain generalizations [1, 2, 3]. The main goal of the talk is to show analogous
results for r and some weaker results for a general pattern v. In particular, we prove that
a monochromatic arithmetic progression of difference d ≥ 3 starting at 0 in r has length
at most (d+ 3)/2, with equality infinitely often. We also compute the maximal length of
monochromatic progressions of differences 2k − 1 and 2k + 1.

[1] I. Aedo, U. Grimm, Y. Nagai, P. Staynova, On long arithmetic progressions in binary Morse-like
words, preprint, https://arxiv.org/abs/2101.02056 (2021), 23 pp.

[2] J. F. Morgenbesser, J. Shallit, T. Stoll, Thue–Morse at multiples of an integer, J. Number Theory
131 (2011), no. 8, 1498–1512.

[3] O. G. Parshina, On arithmetic index in the generalized Thue–Morse word, in: S. Brlek, F. Dolce, C.
Reutenauer, É. Vandomme (eds.), Combinatorics on Words, Springer, Cham, 2017, 121–131
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Friday 11:50, George Fox Lecture Theatre 3

Caps up to dimension 7

Henry (Maya) Robert Thackeray

maya.thackeray@up.ac.za; mayart314@outlook.com

University of Pretoria

A cap of size s in dimension n is given by a collection of s points, no three of which
are collinear, in n-dimensional affine space over the field of three elements. The cap set
problem asks for the largest possible size of a cap in each dimension. The problem is
solved for dimensions up to and including 6, but is open for dimensions 7 and higher.

We use the results of computer searches to classify large caps in dimensions 5 and 6, and
to prove that in dimension 7, the size of every cap is at most 288.

This talk is based on two upcoming papers by the author (Thackeray 2022a-b). The
research was supported by the UP Post-Doctoral Fellowship Programme administered by
the University of Pretoria (grant number A0X 816).

Thackeray, H. (M.) R. 2022a. The cap set problem: 41-cap 5-flats. In preparation.

Thackeray, H. (M.) R. 2022b. The cap set problem: Up to dimension 7. In preparation.
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Friday 13:50, George Fox Lecture Theatre 3

Turán numbers of sunflowers

Domagoj Bradač

domagoj.bradac@math.ethz.ch

Department of Mathematics, ETH Zürich, Switzerland

(This talk is based on joint work with Matija Bucić and Benny Sudakov.)

A collection of distinct sets is called a sunflower if the intersection of any pair of sets
equals the common intersection of all the sets. Sunflowers are fundamental objects in
extremal set theory with relations and applications to many other areas of mathematics
as well as to theoretical computer science. A central problem in the area due to Erdős
and Rado from 1960 asks for the minimum number of sets of size r needed to guarantee
the existence of a sunflower of a given size. Despite a lot of recent attention including a
polymath project and some amazing breakthroughs, even the asymptotic answer remains
unknown.

We study a related problem first posed by Duke and Erdős in 1977 which requires that in
addition the intersection size of the desired sunflower be fixed. This question is perhaps
even more natural from a graph theoretic perspective since it asks for the Turán number
of a hypergraph made by the sunflower consisting of k edges, each of size r and with
common intersection of size t. For a fixed size of the sunflower k, the order of magnitude
of the answer has been determined by Frankl and Füredi. In the 1980’s, with certain
applications in mind, Chung, Erdős and Graham considered what happens if one allows
k, the size of the desired sunflower, to grow with the size of the ground set. In the
three uniform case, r = 3, the correct dependence on the size of the sunflower has been
determined by Duke and Erdős and independently by Frankl and in the four uniform case
by Bucić, Draganić, Sudakov and Tran. We resolve this problem for any uniformity, by
determining up to a constant factor the n-vertex Turán number of a sunflower of arbitrary
uniformity r, common intersection size t and with the size of the sunflower k allowed to
grow with n.
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Friday 11:25, George Fox Lecture Theatre 5

1-independent percolation in Z2 ×Kn

Vincent Pfenninger

vincent.pfenninger@gmail.com

University of Birmingham

(This talk is based on joint work with Victor Falgas-Ravry.)

A random graph model on a host graph H is said to be 1-independent if for every pair
of vertex-disjoint subsets A,B of E(H), the state of edges (absent or present) in A
is independent of the state of edges in B. For an infinite connected graph H, the 1-
independent critical percolation probability p1,c(H) is the infimum of the p ∈ [0, 1] such
that every 1-independent random graph model on H in which each edge is present with
probability at least p almost surely contains an infinite connected component.

Balister and Bollobás observed in 2012 that p1,c(Zd) is nonincreasing and tends to a limit
in [1

2
, 1] as d→∞. They asked for the value of this limit. We make progress towards this

question by showing that

lim
n→∞

p1,c(Z2 ×Kn) = 4− 2
√

3 = 0.5358 . . . .

In fact, we show that the equality above remains true if the sequence of complete
graphs Kn is replaced by a sequence of weakly pseudorandom graphs on n vertices with
average degree ω(log n). We conjecture that the equality also remains true if Kn is re-
placed instead by the n-dimensional hypercube Qn. This latter conjecture would imply
the answer to Balister and Bollobás’s question is 4− 2

√
3.
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Friday 11:50, George Fox Lecture Theatre 5

Exchange distance of basis pairs in split matroids

Tamás Schwarcz

tamas.schwarcz@ttk.elte.hu

Department of Operations Research, Eötvös Loránd University, Budapest, Hungary

(This talk is based on joint work with Kristóf Bérczi.)

The basis exchange axiom has been a driving force in the development of matroid theory.
However, the axiom gives only a local characterization of the relation of bases, which is a
major stumbling block to further progress, and providing a global understanding of the
structure of matroid bases is a fundamental goal in matroid optimization.

While studying the structure of symmetric exchanges, Gabow proposed the problem that
any pair of bases admits a sequence of symmetric exchanges. A different extension of the
exchange axiom was proposed by White, who investigated the equivalence of compatible
basis sequences. Farber studied the structure of basis pairs, and conjectured that the
basis pair graph of any matroid is connected. These conjectures suggest that the family
of bases of a matroid possesses much stronger structural properties than we are aware of.

In the present talk, we study the distance of basis pairs of a matroid in terms of symmetric
exchanges. In particular, we give an upper bound on the minimum number of exchanges
needed to transform a basis pair into another for split matroids, a class that was motivated
by the study of matroid polytopes from a tropical geometry point of view. As a corollary,
we verify the above mentioned long-standing conjectures for this large class. Being a
subclass of split matroids, our result settles the conjectures for paving matroids as well.
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Friday 13:50, George Fox Lecture Theatre 5

Symmetry and the design of self-stressed
structures

Bernd Schulze

b.schulze@lancaster.ac.uk

Lancaster University

(This talk is based on joint work with Cameron Millar (SOM), Arek Mazurek (Mazurek
Consulting) and William Baker (SOM).)

In 2000 Fowler and Guest established a symmetry-extended Maxwell rule for the rigidity
of (bar-joint) frameworks. This rule can often reveal ‘hidden’ infinitesimal motions and
states of self-stress in symmetric frameworks that cannot be detected with Maxwell’s orig-
inal rule from 1864. In this talk we show how this rule can be used to derive an efficient new
method for constructing symmetric frameworks with a large number of ‘fully-symmetric’
or ‘anti-symmetric’ states of self-stress. Maximizing the number of independent states of
self-stress of a planar framework, as well as understanding their symmetry properties, has
important practical applications, for example in the design and construction of gridshells.
We show the usefulness of our method by applying it to some practical examples.
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Friday 13:50, George Fox Lecture Theatre 5

The geometry of random graphs with a Markov
flavour

Mohabat Tarkeshian

mtarkesh@uwo.ca

The University of Western Ontario

Random graphs are at the intersection of probability and graph theory: it is the study of
the stochastic process by which graphs form and evolve. In 1959, Erdős and Rényi defined
the foundational model of random graphs on n vertices. Subsequently, Frank and Strauss
(1986) added a Markov twist to this story by describing a topological structure on random
graphs that encodes dependencies between local pairs of vertices. The general model that
describes this framework is called the exponential random graph model (ERGM). It is
used in social network analysis and appears in statistical physics as in the ferromagnetic
Ising model. We characterize the parameters that determine when an ERGM has desirable
properties using a well-developed dictionary between probability distributions and their
corresponding generating polynomials.
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Draganić . . . . . . . . . . . . . . . . . . . . . . . . 90
Ellis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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