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Coincident Points Problem

• Let G = (V ,E ) be a graph and u, v ,w ∈ V be distinct.

• Let (G,p) be a realisation of G in R2 such that p(u) = p(v) = p(w) and
these are the only algebraic dependencies of p.
• Let Ruvw (G ) denote the rigidity matroid of G which is obtained from the

rigidity matrix of (G , p) for such p.
• Can we chracterise Ruvw (G ) in a combinatorial way?
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Two Coincident Points Example

• We say a graph G is uv -rigid, if there exists an in�nitesimally rigid

framework (G , p) with p(u) = p(v).

u

x y

v
G p(u)=p(v)

p(x) p(y)

G is not uv-rigid

p(u)

p(x)=p(v)

p(y)

G is vx-rigid

blue for v
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Basic De�nitions

• Let H = {H1, ...,Hk} be a family with Hi ⊆ V , 1 ≤ i ≤ k and let S ⊆ V
with |S | ≥ 1.

• We say that H is S-compatible if S ⊆ Hi and |Hi | ≥ |S |+ 1 hold for all

1 ≤ i ≤ k .
• The S-value of a subset H of V of size at least two is 2|H| − 3 if H 6⊆ S ,
and is equal to zero if H ⊆ S . We denote the S-value of H by valS(H).
• The S-value of an S-compatible family H is

valS(H) =
k∑

i=1

(2|Hi \ S | − 1) + 2(|S | − 1)

=
k∑

i=1

(2|Hi | − 3)− 2(|S | − 1)(k − 1)
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S-Sparsity

• We say that G is S-sparse if, for all H ⊆ V with |H| ≥ 2, we have

iG (H) ≤ valS(H), and for all S-compatible families H, we have

iG (H) ≤ valS(H). It follows that, if G is S-sparse, then there is no edge

between any distinct pair of vertices in S as valS(H) = 0 for a set H ⊆ S .

u v w
x1

x2

x3

x4

x5

u v w
x1

x2

x3

• The graph on the left is S-sparse for any S ( {u, v ,w}, but it is not
{u, v ,w}-sparse. For the {u, v ,w}-compatible family

H = {{u, v ,w , xi} : 1 ≤ i ≤ 5} we have iG (H) = 10 > 9 = val{u,v ,w}(H)
• The graph on the right is {u, v ,w}-sparse, but it is not {u, v}-sparse.
For the {u, v}-compatible family H = {{u, v , xi} : 1 ≤ i ≤ 3} we have

iG (H) = 6 > 5 = val{u,v}(H)
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The Count Matroid

• We say a graph G = (V ,E ) is (U)-sparse if it is S-sparse for all S ⊆ U
with |S | ≥ 2.

• Let H = {H1, ...,Ht} be an S-compatible family and let X1, ...,Xk be

subsets of V of size at least two. We say that a collection

K = {X1, ...,Xk} is thin if

(i) |Xi ∩ Xj | ≤ 1 for all pairs 1 ≤ i < j ≤ k .
The collection L = {H,X1, ...,Xk} is thin if (i) holds and

(ii) Hi ∩ Hj = S for all pairs 1 ≤ i < j ≤ t, and
(iii) |Xi ∩

⋃t
j=1Hj | ≤ 1 for all 1 ≤ i ≤ k .

• We de�ne the value of L as

val(L) = valS(H) +
k∑

i=1

2|Xi | − 3.
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The Count Matroid

Theorem 1 (Fekete, Jordán and Kaszanitzky (|U | = 2) / Jackson, G.
(|U | ≥ 3))

Let G = (V ,E ) be a graph and U ⊆ V . Then the family

IG := {F : F ⊆ E ,H = (V ,F ) is (U)− sparse} is a family of independent

sets of a matroid,MU(G ) on E . Moreover, the rank of a set E ′ ⊆ E in

MU(G ) is equal to

min{val(L) : L is a thin cover of E ′}.
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Results and Examples

Theorem 2 (Fekete, Jordán and Kaszanitzky)

Let G = (V ,E ) be a graph and u, v ⊆ V be distinct. Then

Muv (G ) = Ruv (G ).

Theorem 3

Let G = (V ,E ) be a graph and u, v ,w ⊆ V be distinct. Then

Muvw (G ) = Ruvw (G ).
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Two Coincident Points

Theorem 4 (Fekete, Jordán and Kaszanitzky)

Let G = (V ,E ) be a graph and u, v ∈ V be distinct vertices. Then G is

uv -rigid if and only if G − uv and Guv are both rigid.

The graph Guv is obtained from G by contracting u and v , and deleting

double edges if there are any.

u

x y

v
G

u

x y

v
G − uv

Flexible

u

x y

v
G − vx

Rigid

u

zvx y

Gvx

Rigid
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Three Coincident Points

• We say a graph G is uvw -rigid, if there exists an in�nitesimally rigid

framework (G , p) with p(u) = p(v) = p(w).

Theorem 5

Let G = (V ,E ) be a graph and let u, v ,w ∈ V be distinct vertices and

G ′ = G − uv − uw − vw . Then G is uvw -rigid if and only if G ′ and G ′
S are

rigid for all S ⊆ {u, v ,w} with |S | ≥ 2.

u v w

G=G ′

Rigid

zuv w

Guv

Rigid

zuw v

Guw

Rigid

u

v

Gvw

Rigid

zuvw

Guvw

Rigid

• G is uvw -rigid.
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Three Coincident Points

u v

w

G=G ′

Rigid

zuv

w

Guv

Flexible

zuvw
G=Guvw

Rigid

• G is not uvw -rigid.
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Three Coincident Points

u v
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Rigid

zuv
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Guv

Flexible

zuvw
G=Guvw

Rigid

• G is not uvw -rigid.

H. Guler 2-Dimensional Rigidity with Three Coincident Points 12 / 13



Any Questions

Thank you!
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