2-Dimensional Rigidity with Three Coincident Points

Hakan Guler
joint work with Bill Jackson
Queen Mary, University of London
June 9, 2017

Overview

(1) Coincident Points Problem

(2) Basic Definitions

(3) Results and Examples

Coincident Points Problem

- Let $G=(V, E)$ be a graph and $u, v, w \in V$ be distinct.

Coincident Points Problem

- Let $G=(V, E)$ be a graph and $u, v, w \in V$ be distinct.
- Let (G, p) be a realisation of G in \mathbb{R}^{2} such that $p(u)=p(v)=p(w)$ and these are the only algebraic dependencies of p.

Coincident Points Problem

- Let $G=(V, E)$ be a graph and $u, v, w \in V$ be distinct.
- Let (G, p) be a realisation of G in \mathbb{R}^{2} such that $p(u)=p(v)=p(w)$ and these are the only algebraic dependencies of p.
- Let $\mathcal{R}_{u v w}(G)$ denote the rigidity matroid of G which is obtained from the rigidity matrix of (G, p) for such p.

Coincident Points Problem

- Let $G=(V, E)$ be a graph and $u, v, w \in V$ be distinct.
- Let (G, p) be a realisation of G in \mathbb{R}^{2} such that $p(u)=p(v)=p(w)$ and these are the only algebraic dependencies of p.
- Let $\mathcal{R}_{u v w}(G)$ denote the rigidity matroid of G which is obtained from the rigidity matrix of (G, p) for such p.
- Can we chracterise $\mathcal{R}_{u v w}(G)$ in a combinatorial way?

Two Coincident Points Example

- We say a graph G is $u v$-rigid, if there exists an infinitesimally rigid framework (G, p) with $p(u)=p(v)$.

Two Coincident Points Example

- We say a graph G is $u v$-rigid, if there exists an infinitesimally rigid framework (G, p) with $p(u)=p(v)$.

G is not $u v$-rigid
G is $v x$-rigid

Two Coincident Points Example

- We say a graph G is $u v$-rigid, if there exists an infinitesimally rigid framework (G, p) with $p(u)=p(v)$.

G is not $u v$-rigid
G is $v x$-rigid

Two Coincident Points Example

- We say a graph G is $u v$-rigid, if there exists an infinitesimally rigid framework (G, p) with $p(u)=p(v)$.

Basic Definitions

- Let $\mathcal{H}=\left\{H_{1}, \ldots, H_{k}\right\}$ be a family with $H_{i} \subseteq V, 1 \leq i \leq k$ and let $S \subseteq V$ with $|S| \geq 1$.

Basic Definitions

- Let $\mathcal{H}=\left\{H_{1}, \ldots, H_{k}\right\}$ be a family with $H_{i} \subseteq V, 1 \leq i \leq k$ and let $S \subseteq V$ with $|S| \geq 1$.
- We say that \mathcal{H} is S-compatible if $S \subseteq H_{i}$ and $\left|H_{i}\right| \geq|S|+1$ hold for all $1 \leq i \leq k$.

Basic Definitions

- Let $\mathcal{H}=\left\{H_{1}, \ldots, H_{k}\right\}$ be a family with $H_{i} \subseteq V, 1 \leq i \leq k$ and let $S \subseteq V$ with $|S| \geq 1$.
- We say that \mathcal{H} is S-compatible if $S \subseteq H_{i}$ and $\left|H_{i}\right| \geq|S|+1$ hold for all $1 \leq i \leq k$.
- The S-value of a subset H of V of size at least two is $2|H|-3$ if $H \nsubseteq S$, and is equal to zero if $H \subseteq S$. We denote the S-value of H by vals (H).

Basic Definitions

- Let $\mathcal{H}=\left\{H_{1}, \ldots, H_{k}\right\}$ be a family with $H_{i} \subseteq V, 1 \leq i \leq k$ and let $S \subseteq V$ with $|S| \geq 1$.
- We say that \mathcal{H} is S-compatible if $S \subseteq H_{i}$ and $\left|H_{i}\right| \geq|S|+1$ hold for all $1 \leq i \leq k$.
- The S-value of a subset H of V of size at least two is $2|H|-3$ if $H \nsubseteq S$, and is equal to zero if $H \subseteq S$. We denote the S-value of H by vals (H).
- The S-value of an S-compatible family \mathcal{H} is

$$
\operatorname{val}_{S}(\mathcal{H})=\sum_{i=1}^{k}\left(2\left|H_{i} \backslash S\right|-1\right)+2(|S|-1)
$$

Basic Definitions

- Let $\mathcal{H}=\left\{H_{1}, \ldots, H_{k}\right\}$ be a family with $H_{i} \subseteq V, 1 \leq i \leq k$ and let $S \subseteq V$ with $|S| \geq 1$.
- We say that \mathcal{H} is S-compatible if $S \subseteq H_{i}$ and $\left|H_{i}\right| \geq|S|+1$ hold for all $1 \leq i \leq k$.
- The S-value of a subset H of V of size at least two is $2|H|-3$ if $H \nsubseteq S$, and is equal to zero if $H \subseteq S$. We denote the S-value of H by vals (H).
- The S-value of an S-compatible family \mathcal{H} is

$$
\begin{gathered}
\operatorname{val}_{S}(\mathcal{H})=\sum_{i=1}^{k}\left(2\left|H_{i} \backslash S\right|-1\right)+2(|S|-1) \\
=\sum_{i=1}^{k}\left(2\left|H_{i}\right|-3\right)-2(|S|-1)(k-1)
\end{gathered}
$$

S-Sparsity

- We say that G is S-sparse if, for all $H \subseteq V$ with $|H| \geq 2$, we have $i_{G}(H) \leq \operatorname{val}_{S}(H)$, and for all S-compatible families \mathcal{H}, we have $i_{G}(\mathcal{H}) \leq \operatorname{val}_{S}(\mathcal{H})$. It follows that, if G is S-sparse, then there is no edge between any distinct pair of vertices in S as $\operatorname{val}_{S}(H)=0$ for a set $H \subseteq S$.

S-Sparsity

- We say that G is S-sparse if, for all $H \subseteq V$ with $|H| \geq 2$, we have $i_{G}(H) \leq \operatorname{val}_{S}(H)$, and for all S-compatible families \mathcal{H}, we have $i_{G}(\mathcal{H}) \leq \operatorname{val}_{S}(\mathcal{H})$. It follows that, if G is S-sparse, then there is no edge between any distinct pair of vertices in S as val $_{S}(H)=0$ for a set $H \subseteq S$.

S-Sparsity

- We say that G is S-sparse if, for all $H \subseteq V$ with $|H| \geq 2$, we have $i_{G}(H) \leq \operatorname{val}_{S}(H)$, and for all S-compatible families \mathcal{H}, we have $i_{G}(\mathcal{H}) \leq \operatorname{val}_{S}(\mathcal{H})$. It follows that, if G is S-sparse, then there is no edge between any distinct pair of vertices in S as val $_{S}(H)=0$ for a set $H \subseteq S$.

- The graph on the left is S-sparse for any $S \subsetneq\{u, v, w\}$, but it is not $\{u, v, w\}$-sparse.

S-Sparsity

- We say that G is S-sparse if, for all $H \subseteq V$ with $|H| \geq 2$, we have $i_{G}(H) \leq \operatorname{val}_{S}(H)$, and for all S-compatible families \mathcal{H}, we have $i_{G}(\mathcal{H}) \leq \operatorname{val}_{S}(\mathcal{H})$. It follows that, if G is S-sparse, then there is no edge between any distinct pair of vertices in S as val $_{S}(H)=0$ for a set $H \subseteq S$.

- The graph on the left is S-sparse for any $S \subsetneq\{u, v, w\}$, but it is not $\{u, v, w\}$-sparse. For the $\{u, v, w\}$-compatible family $\mathcal{H}=\left\{\left\{u, v, w, x_{i}\right\}: 1 \leq i \leq 5\right\}$ we have $i_{G}(\mathcal{H})=10>9=\operatorname{val}_{\{u, v, w\}}(\mathcal{H})$

S-Sparsity

- We say that G is S-sparse if, for all $H \subseteq V$ with $|H| \geq 2$, we have $i_{G}(H) \leq \operatorname{val}_{S}(H)$, and for all S-compatible families \mathcal{H}, we have $i_{G}(\mathcal{H}) \leq \operatorname{val}_{S}(\mathcal{H})$. It follows that, if G is S-sparse, then there is no edge between any distinct pair of vertices in S as $\operatorname{val}_{S}(H)=0$ for a set $H \subseteq S$.

- The graph on the left is S-sparse for any $S \subsetneq\{u, v, w\}$, but it is not $\{u, v, w\}$-sparse. For the $\{u, v, w\}$-compatible family $\mathcal{H}=\left\{\left\{u, v, w, x_{i}\right\}: 1 \leq i \leq 5\right\}$ we have $i_{G}(\mathcal{H})=10>9=\operatorname{val}\left\{_{\{u, v, w\}}(\mathcal{H})\right.$
- The graph on the right is $\{u, v, w\}$-sparse, but it is not $\{u, v\}$-sparse.

S-Sparsity

- We say that G is S-sparse if, for all $H \subseteq V$ with $|H| \geq 2$, we have $i_{G}(H) \leq \operatorname{val}_{S}(H)$, and for all S-compatible families \mathcal{H}, we have $i_{G}(\mathcal{H}) \leq \operatorname{val}_{S}(\mathcal{H})$. It follows that, if G is S-sparse, then there is no edge between any distinct pair of vertices in S as val $_{S}(H)=0$ for a set $H \subseteq S$.

- The graph on the left is S-sparse for any $S \subsetneq\{u, v, w\}$, but it is not $\{u, v, w\}$-sparse. For the $\{u, v, w\}$-compatible family $\mathcal{H}=\left\{\left\{u, v, w, x_{i}\right\}: 1 \leq i \leq 5\right\}$ we have $i_{G}(\mathcal{H})=10>9=\operatorname{val}\left\{_{\{u, v, w\}}(\mathcal{H})\right.$
- The graph on the right is $\{u, v, w\}$-sparse, but it is not $\{u, v\}$-sparse. For the $\{u, v\}$-compatible family $\mathcal{H}=\left\{\left\{u, v, x_{i}\right\}: 1 \leq i \leq 3\right\}$ we have $i_{G}(\mathcal{H})=6>5=\operatorname{val}_{\{u, v\}}(\mathcal{H})$

The Count Matroid

- We say a graph $G=(V, E)$ is (U)-sparse if it is S-sparse for all $S \subseteq U$ with $|S| \geq 2$.

The Count Matroid

- We say a graph $G=(V, E)$ is (U)-sparse if it is S-sparse for all $S \subseteq U$ with $|S| \geq 2$.
- Let $\mathcal{H}=\left\{H_{1}, \ldots, H_{t}\right\}$ be an S-compatible family and let X_{1}, \ldots, X_{k} be subsets of V of size at least two. We say that a collection $\mathcal{K}=\left\{X_{1}, \ldots, X_{k}\right\}$ is thin if
(i) $\left|X_{i} \cap X_{j}\right| \leq 1$ for all pairs $1 \leq i<j \leq k$.

The collection $\mathcal{L}=\left\{\mathcal{H}, X_{1}, \ldots, X_{k}\right\}$ is thin if (i) holds and
(ii) $H_{i} \cap H_{j}=S$ for all pairs $1 \leq i<j \leq t$, and
(iii) $\left|X_{i} \cap \bigcup_{j=1}^{t} H_{j}\right| \leq 1$ for all $1 \leq i \leq k$.

The Count Matroid

- We say a graph $G=(V, E)$ is (U)-sparse if it is S-sparse for all $S \subseteq U$ with $|S| \geq 2$.
- Let $\mathcal{H}=\left\{H_{1}, \ldots, H_{t}\right\}$ be an S-compatible family and let X_{1}, \ldots, X_{k} be subsets of V of size at least two. We say that a collection $\mathcal{K}=\left\{X_{1}, \ldots, X_{k}\right\}$ is thin if
(i) $\left|X_{i} \cap X_{j}\right| \leq 1$ for all pairs $1 \leq i<j \leq k$.

The collection $\mathcal{L}=\left\{\mathcal{H}, X_{1}, \ldots, X_{k}\right\}$ is thin if (i) holds and
(ii) $H_{i} \cap H_{j}=S$ for all pairs $1 \leq i<j \leq t$, and
(iii) $\left|X_{i} \cap \bigcup_{j=1}^{t} H_{j}\right| \leq 1$ for all $1 \leq i \leq k$.

- We define the value of \mathcal{L} as

$$
\operatorname{val}(\mathcal{L})=\operatorname{val}_{s}(\mathcal{H})+\sum_{i=1}^{k} 2\left|X_{i}\right|-3
$$

The Count Matroid

Theorem 1 (Fekete, Jordán and Kaszanitzky $(|U|=2) /$ Jackson, G. $(|U| \geq 3))$
Let $G=(V, E)$ be a graph and $U \subseteq V$. Then the family $\mathcal{I}_{G}:=\{F: F \subseteq E, H=(V, F)$ is (U) - sparse $\}$ is a family of independent sets of a matroid, $\mathcal{M}_{U}(G)$ on E. Moreover, the rank of a set $E^{\prime} \subseteq E$ in $\mathcal{M}_{U}(G)$ is equal to

$$
\min \left\{\operatorname{val}(\mathcal{L}): \mathcal{L} \text { is a thin cover of } E^{\prime}\right\} .
$$

Results and Examples

Theorem 2 (Fekete, Jordán and Kaszanitzky)
Let $G=(V, E)$ be a graph and $u, v \subseteq V$ be distinct. Then $\mathcal{M}_{u v}(G)=\mathcal{R}_{u v}(G)$.

Results and Examples

Theorem 2 (Fekete, Jordán and Kaszanitzky)
Let $G=(V, E)$ be a graph and $u, v \subseteq V$ be distinct. Then $\mathcal{M}_{u v}(G)=\mathcal{R}_{u v}(G)$.

Theorem 3

Let $G=(V, E)$ be a graph and $u, v, w \subseteq V$ be distinct. Then $\mathcal{M}_{u v w}(G)=\mathcal{R}_{u v w}(G)$.

Two Coincident Points

Theorem 4 (Fekete, Jordán and Kaszanitzky)

Let $G=(V, E)$ be a graph and $u, v \in V$ be distinct vertices. Then G is uv-rigid if and only if $G-u v$ and $G_{u v}$ are both rigid.

The graph $G_{u v}$ is obtained from G by contracting u and v, and deleting double edges if there are any.

Two Coincident Points

Theorem 4 (Fekete, Jordán and Kaszanitzky)

Let $G=(V, E)$ be a graph and $u, v \in V$ be distinct vertices. Then G is uv-rigid if and only if $G-u v$ and $G_{u v}$ are both rigid.

The graph $G_{u v}$ is obtained from G by contracting u and v, and deleting double edges if there are any.

Two Coincident Points

Theorem 4 (Fekete, Jordán and Kaszanitzky)

Let $G=(V, E)$ be a graph and $u, v \in V$ be distinct vertices. Then G is $u v$-rigid if and only if $G-u v$ and $G_{u v}$ are both rigid.

The graph $G_{u v}$ is obtained from G by contracting u and v, and deleting double edges if there are any.

Two Coincident Points

Theorem 4 (Fekete, Jordán and Kaszanitzky)

Let $G=(V, E)$ be a graph and $u, v \in V$ be distinct vertices. Then G is $u v$-rigid if and only if $G-u v$ and $G_{u v}$ are both rigid.

The graph $G_{u v}$ is obtained from G by contracting u and v, and deleting double edges if there are any.

Three Coincident Points

- We say a graph G is $u v w$-rigid, if there exists an infinitesimally rigid framework (G, p) with $p(u)=p(v)=p(w)$.

Three Coincident Points

- We say a graph G is $u v w$-rigid, if there exists an infinitesimally rigid framework (G, p) with $p(u)=p(v)=p(w)$.

Theorem 5

Let $G=(V, E)$ be a graph and let $u, v, w \in V$ be distinct vertices and
 rigid for all $S \subseteq\{u, v, w\}$ with $|S| \geq 2$.

Three Coincident Points

- We say a graph G is $u v w$-rigid, if there exists an infinitesimally rigid framework (G, p) with $p(u)=p(v)=p(w)$.

Theorem 5

Let $G=(V, E)$ be a graph and let $u, v, w \in V$ be distinct vertices and $G^{\prime}=G-u v-u w-v w$. Then G is $u v w-r i g i d$ if and only if G^{\prime} and G_{S}^{\prime} are rigid for all $S \subseteq\{u, v, w\}$ with $|S| \geq 2$.

$G=G^{\prime}$
Rigid

$G_{u v}$
Rigid

$G_{u w}$
Rigid

$G_{v w}$
Rigid

$G_{u v w}$
Rigid

Three Coincident Points

- We say a graph G is $u v w$-rigid, if there exists an infinitesimally rigid framework (G, p) with $p(u)=p(v)=p(w)$.

Theorem 5

Let $G=(V, E)$ be a graph and let $u, v, w \in V$ be distinct vertices and $G^{\prime}=G-u v-u w-v w$. Then G is $u v w-r i g i d$ if and only if G^{\prime} and G_{S}^{\prime} are rigid for all $S \subseteq\{u, v, w\}$ with $|S| \geq 2$.

$G=G^{\prime}$
Rigid

$G_{u v}$
Rigid

$G_{u w}$
Rigid

$G_{v w}$
Rigid

$G_{u v w}$
Rigid

- G is $u v w$-rigid.

Three Coincident Points

Three Coincident Points

- G is not $u v w$-rigid.

Any Questions

Thank you!

