2-Dimensional Rigidity with Three Coincident Points

Hakan Guler

joint work with Bill Jackson

Queen Mary, University of London

June 9, 2017

H. Guler

2-Dimensional Rigidity with Three Coincident Points

1 / 13

æ

∃ ► < ∃ ►

• Let G = (V, E) be a graph and $u, v, w \in V$ be distinct.

э

- Let G = (V, E) be a graph and $u, v, w \in V$ be distinct.
- Let (G,p) be a realisation of G in \mathbb{R}^2 such that p(u) = p(v) = p(w) and these are the only algebraic dependencies of p.

- Let G = (V, E) be a graph and $u, v, w \in V$ be distinct.
- Let (G,p) be a realisation of G in \mathbb{R}^2 such that p(u) = p(v) = p(w) and these are the only algebraic dependencies of p.
- Let $\mathcal{R}_{uvw}(G)$ denote the rigidity matroid of G which is obtained from the rigidity matrix of (G, p) for such p.

- Let G = (V, E) be a graph and $u, v, w \in V$ be distinct.
- Let (G,p) be a realisation of G in \mathbb{R}^2 such that p(u) = p(v) = p(w) and these are the only algebraic dependencies of p.
- Let $\mathcal{R}_{uvw}(G)$ denote the rigidity matroid of G which is obtained from the rigidity matrix of (G, p) for such p.
- Can we chracterise $\mathcal{R}_{uvw}(G)$ in a combinatorial way?

∃ ► < ∃ ►

G is not uv-rigid

G is vx rigid

G is not uv-rigid

G is vx rigid

• Let $\mathcal{H} = \{H_1, ..., H_k\}$ be a family with $H_i \subseteq V$, $1 \leq i \leq k$ and let $S \subseteq V$ with $|S| \geq 1$.

э

A B M A B M

< 🗗 🕨

- Let $\mathcal{H} = \{H_1, ..., H_k\}$ be a family with $H_i \subseteq V$, $1 \leq i \leq k$ and let $S \subseteq V$ with $|S| \geq 1$.
- We say that \mathcal{H} is *S*-compatible if $S \subseteq H_i$ and $|H_i| \ge |S| + 1$ hold for all $1 \le i \le k$.

- Let $\mathcal{H} = \{H_1, ..., H_k\}$ be a family with $H_i \subseteq V$, $1 \leq i \leq k$ and let $S \subseteq V$ with $|S| \geq 1$.
- We say that \mathcal{H} is *S*-compatible if $S \subseteq H_i$ and $|H_i| \ge |S| + 1$ hold for all $1 \le i \le k$.
- The *S*-value of a subset *H* of *V* of size at least two is 2|H| 3 if $H \not\subseteq S$, and is equal to zero if $H \subseteq S$. We denote the *S*-value of *H* by $val_S(H)$.

- Let $\mathcal{H} = \{H_1, ..., H_k\}$ be a family with $H_i \subseteq V$, $1 \leq i \leq k$ and let $S \subseteq V$ with $|S| \geq 1$.
- We say that \mathcal{H} is *S*-compatible if $S \subseteq H_i$ and $|H_i| \ge |S| + 1$ hold for all $1 \le i \le k$.
- The *S*-value of a subset *H* of *V* of size at least two is 2|H| 3 if $H \not\subseteq S$, and is equal to zero if $H \subseteq S$. We denote the *S*-value of *H* by $val_S(H)$.
- The S-value of an S-compatible family $\mathcal H$ is

$$\mathsf{val}_{\mathcal{S}}(\mathcal{H}) = \sum_{i=1}^{k} (2|\mathcal{H}_i \setminus \mathcal{S}| - 1) + 2(|\mathcal{S}| - 1)$$

- Let $\mathcal{H} = \{H_1, ..., H_k\}$ be a family with $H_i \subseteq V$, $1 \leq i \leq k$ and let $S \subseteq V$ with $|S| \geq 1$.
- We say that \mathcal{H} is *S*-compatible if $S \subseteq H_i$ and $|H_i| \ge |S| + 1$ hold for all $1 \le i \le k$.
- The *S*-value of a subset *H* of *V* of size at least two is 2|H| 3 if $H \not\subseteq S$, and is equal to zero if $H \subseteq S$. We denote the *S*-value of *H* by $val_S(H)$.
- The S-value of an S-compatible family $\mathcal H$ is

$$\mathsf{val}_{\mathcal{S}}(\mathcal{H}) = \sum_{i=1}^{k} \left(2|\mathcal{H}_i \setminus \mathcal{S}| - 1 \right) + 2(|\mathcal{S}| - 1)$$

$$=\sum_{i=1}^{k}(2|H_i|-3)-2(|S|-1)(k-1)$$

• We say that G is S-sparse if, for all $H \subseteq V$ with $|H| \ge 2$, we have $i_G(H) \le val_S(H)$, and for all S-compatible families \mathcal{H} , we have $i_G(\mathcal{H}) \le val_S(\mathcal{H})$. It follows that, if G is S-sparse, then there is no edge between any distinct pair of vertices in S as $val_S(H) = 0$ for a set $H \subseteq S$.

< ロト < 同ト < 三ト < 三ト

• We say that G is S-sparse if, for all $H \subseteq V$ with $|H| \ge 2$, we have $i_G(H) \le val_S(H)$, and for all S-compatible families \mathcal{H} , we have $i_G(\mathcal{H}) \le val_S(\mathcal{H})$. It follows that, if G is S-sparse, then there is no edge between any distinct pair of vertices in S as $val_S(H) = 0$ for a set $H \subseteq S$.

• We say that G is S-sparse if, for all $H \subseteq V$ with $|H| \ge 2$, we have $i_G(H) \le val_S(H)$, and for all S-compatible families \mathcal{H} , we have $i_G(\mathcal{H}) \le val_S(\mathcal{H})$. It follows that, if G is S-sparse, then there is no edge between any distinct pair of vertices in S as $val_S(H) = 0$ for a set $H \subseteq S$.

• The graph on the left is S-sparse for any $S \subsetneq \{u, v, w\}$, but it is not $\{u, v, w\}$ -sparse.

• We say that G is S-sparse if, for all $H \subseteq V$ with $|H| \ge 2$, we have $i_G(H) \le val_S(H)$, and for all S-compatible families \mathcal{H} , we have $i_G(\mathcal{H}) \le val_S(\mathcal{H})$. It follows that, if G is S-sparse, then there is no edge between any distinct pair of vertices in S as $val_S(H) = 0$ for a set $H \subseteq S$.

• The graph on the left is S-sparse for any $S \subsetneq \{u, v, w\}$, but it is not $\{u, v, w\}$ -sparse. For the $\{u, v, w\}$ -compatible family $\mathcal{H} = \{\{u, v, w, x_i\} : 1 \le i \le 5\}$ we have $i_G(\mathcal{H}) = 10 > 9 = val_{\{u, v, w\}}(\mathcal{H})$

イロト イポト イヨト イヨト

• We say that G is S-sparse if, for all $H \subseteq V$ with $|H| \ge 2$, we have $i_G(H) \le val_S(H)$, and for all S-compatible families \mathcal{H} , we have $i_G(\mathcal{H}) \le val_S(\mathcal{H})$. It follows that, if G is S-sparse, then there is no edge between any distinct pair of vertices in S as $val_S(H) = 0$ for a set $H \subseteq S$.

• The graph on the left is S-sparse for any $S \subsetneq \{u, v, w\}$, but it is not $\{u, v, w\}$ -sparse. For the $\{u, v, w\}$ -compatible family $\mathcal{H} = \{\{u, v, w, x_i\} : 1 \le i \le 5\}$ we have $i_G(\mathcal{H}) = 10 > 9 = val_{\{u, v, w\}}(\mathcal{H})$ • The graph on the right is $\{u, v, w\}$ -sparse, but it is not $\{u, v\}$ -sparse.

イロト イポト イヨト イヨト

• We say that G is S-sparse if, for all $H \subseteq V$ with $|H| \ge 2$, we have $i_G(H) \le val_S(H)$, and for all S-compatible families \mathcal{H} , we have $i_G(\mathcal{H}) \le val_S(\mathcal{H})$. It follows that, if G is S-sparse, then there is no edge between any distinct pair of vertices in S as $val_S(H) = 0$ for a set $H \subseteq S$.

• The graph on the left is S-sparse for any $S \subsetneq \{u, v, w\}$, but it is not $\{u, v, w\}$ -sparse. For the $\{u, v, w\}$ -compatible family $\mathcal{H} = \{\{u, v, w, x_i\} : 1 \le i \le 5\}$ we have $i_G(\mathcal{H}) = 10 > 9 = val_{\{u, v, w\}}(\mathcal{H})$ • The graph on the right is $\{u, v, w\}$ -sparse, but it is not $\{u, v\}$ -sparse. For the $\{u, v\}$ -compatible family $\mathcal{H} = \{\{u, v, x_i\} : 1 \le i \le 3\}$ we have $i_G(\mathcal{H}) = 6 > 5 = val_{\{u, v\}}(\mathcal{H})$

The Count Matroid

• We say a graph G = (V, E) is (U)-sparse if it is S-sparse for all $S \subseteq U$ with $|S| \ge 2$.

2-Dimensional Rigidity with Three Coincident Points

The Count Matroid

• We say a graph G = (V, E) is (U)-sparse if it is S-sparse for all $S \subseteq U$ with $|S| \ge 2$.

• Let $\mathcal{H} = \{H_1, ..., H_t\}$ be an S-compatible family and let $X_1, ..., X_k$ be subsets of V of size at least two. We say that a collection $\mathcal{K} = \{X_1, ..., X_k\}$ is *thin* if (i) $|X_i \cap X_j| \le 1$ for all pairs $1 \le i < j \le k$. The collection $\mathcal{L} = \{\mathcal{H}, X_1, ..., X_k\}$ is *thin* if (i) holds and (ii) $H_i \cap H_j = S$ for all pairs $1 \le i < j \le t$, and (iii) $|X_i \cap \bigcup_{j=1}^t H_j| \le 1$ for all $1 \le i \le k$.

The Count Matroid

• We say a graph G = (V, E) is (U)-sparse if it is S-sparse for all $S \subseteq U$ with $|S| \ge 2$.

Let H = {H₁,..., H_t} be an S-compatible family and let X₁,..., X_k be subsets of V of size at least two. We say that a collection K = {X₁,..., X_k} is *thin* if
(i) |X_i ∩ X_j| ≤ 1 for all pairs 1 ≤ i < j ≤ k. The collection L = {H, X₁,..., X_k} is *thin* if (i) holds and
(ii) H_i ∩ H_j = S for all pairs 1 ≤ i < j ≤ t, and
(iii) |X_i ∩ ∪^t_{j=1} H_j| ≤ 1 for all 1 ≤ i ≤ k.
We define the value of L as

$$\operatorname{val}(\mathcal{L}) = \operatorname{val}_{\mathcal{S}}(\mathcal{H}) + \sum_{i=1}^{k} 2|X_i| - 3.$$

Theorem 1 (Fekete, Jordán and Kaszanitzky (|U| = 2) / Jackson, G. ($|U| \ge 3$))

Let G = (V, E) be a graph and $U \subseteq V$. Then the family $\mathcal{I}_G := \{F : F \subseteq E, H = (V, F) \text{ is } (U) - \text{sparse}\}$ is a family of independent sets of a matroid, $\mathcal{M}_U(G)$ on E. Moreover, the rank of a set $E' \subseteq E$ in $\mathcal{M}_U(G)$ is equal to

 $min\{val(\mathcal{L}) : \mathcal{L} \text{ is a thin cover of } E'\}.$

Let G = (V, E) be a graph and $u, v \subseteq V$ be distinct. Then $\mathcal{M}_{uv}(G) = \mathcal{R}_{uv}(G)$.

< 47 ▶

Let G = (V, E) be a graph and $u, v \subseteq V$ be distinct. Then $\mathcal{M}_{uv}(G) = \mathcal{R}_{uv}(G)$.

Theorem 3

Let G = (V, E) be a graph and $u, v, w \subseteq V$ be distinct. Then $\mathcal{M}_{uvw}(G) = \mathcal{R}_{uvw}(G)$.

・ 伺 ト ・ ヨ ト ・ ヨ ト

Let G = (V, E) be a graph and $u, v \in V$ be distinct vertices. Then G is uv-rigid if and only if G - uv and G_{uv} are both rigid.

Let G = (V, E) be a graph and $u, v \in V$ be distinct vertices. Then G is uv-rigid if and only if G - uv and G_{uv} are both rigid.

Let G = (V, E) be a graph and $u, v \in V$ be distinct vertices. Then G is uv-rigid if and only if G - uv and G_{uv} are both rigid.

Let G = (V, E) be a graph and $u, v \in V$ be distinct vertices. Then G is uv-rigid if and only if G - uv and G_{uv} are both rigid.

2-Dimensional Rigidity with Three Coincident Points

Theorem 5

Let G = (V, E) be a graph and let $u, v, w \in V$ be distinct vertices and G' = G - uv - uw - vw. Then G is uvw-rigid if and only if G' and G'_S are rigid for all $S \subseteq \{u, v, w\}$ with $|S| \ge 2$.

Theorem 5

Let G = (V, E) be a graph and let $u, v, w \in V$ be distinct vertices and G' = G - uv - uw - vw. Then G is uvw-rigid if and only if G' and G'_S are rigid for all $S \subseteq \{u, v, w\}$ with $|S| \ge 2$.

Theorem 5

Let G = (V, E) be a graph and let $u, v, w \in V$ be distinct vertices and G' = G - uv - uw - vw. Then G is uvw-rigid if and only if G' and G'_S are rigid for all $S \subseteq \{u, v, w\}$ with $|S| \ge 2$.

• G is uvw-rigid.

< 47 ▶

Three Coincident Points

2-Dimensional Rigidity with Three Coincident Points

12 / 13

æ

イロト イヨト イヨト イヨト

Three Coincident Points

• G is not uvw-rigid.

H. Guler

2-Dimensional Rigidity with Three Coincident Points

< 17 ▶

12 / 13

æ

Thank you!

2-Dimensional Rigidity with Three Coincident Points

13 / 13

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・