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Guiding motivation: 

Physics is interesting because we live in 3 dimensions

—> Geometrical Frustration



What is Geometrical Frustration? 
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FIG. 1. (a) Particle packing in two dimensions: equilateral triangles are preferred locally 
and pack naturally to form a close-packed triangular lattice. (b) Particle packing in three 
dimensions: although tetrahedra are preferred locally and combine with slight distortions to 
form a regular icosahedron, the fivefold symmetry axes of the icosahedron preclude a 
simple space-filling lattice. 

For identical particles interacting with simple pair potentials, liquids 
would have the same short-range order as crystals, crystals would always 
form a triangular lattice, and undercooling liquids fast enough to form a 
glass would be virtually impossible. The reason for this state of affairs lies 
in the geometry of 2-D particle packings: As shown in Fig. l a ,  triplets of 
particles will tend to form equilateral triangles to minimize the energy or 
maximize the density. Six such triangles pack naturally to form a 
hexagon, which should be the dominant motif characterizing short-range 
order in a dense liquid. Such a hexagon can be extended very easily to 
form a triangular (i.e., hexagonal close-packed) lattice, which is the 
expected ground state for classical particles with a wide variety of pair 
potentials. A liquid with hexagonal short-range order automatically 
contains many nuclei of the stable crystal, which prevents the undercool- 
ing necessary to form a glass. 

The situation is quite different in three dimensions, again for elemen- 
tary geometrical reasons: Four hard spheres form a dense tetrahedral 
packing, in which each sphere is in contact with the three others. 

Geometric frustration: locally preferred order ≠ globally preferred order 
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Frustration —> disordered phases
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Figure 2 Coordinates identified as belonging to different LFSs. a, Liquid, cP/cPG = 0.73±0.04. b, (Ergodic) liquid close to gelation, cP/cPG = 0.92±0.04. c, Colloidal
gel, cP/cPG = 1.08±0.04. d, Dilute gel, � = 0.05, cP = 1.76⇥10�4, showing percolating LFSs. Particles are colour-coded as follows: grey, free (not in any cluster), shown
0.4 actual size; white, m= 5, shown 0.6 actual size; yellow, crystalline, shown 0.8 actual size. Other particles are members of LFSs of size m given by the colours, shown
0.8 actual size.

global potential-energy minima for clusters interacting via the
Morse potential (with range parameter ⇢0 = 30) to be LFSs24.
Furthermore, we use the Morse potential in our brownian
dynamics simulations, and find a very similar behaviour (see the
Supplementary Information). To identify these structures in the
bulk system, we have developed a novel topological method, TCC,
that identifies LFSs in terms of their bond network. We begin with
the bond network between all of the particles. The bond length
is equated with the interaction range, that is, the polymer size,
0.18�, where � = 2.4 µm is the colloid diameter25,26, leading to
percolation in both the colloidal gel and the liquid for � = 0.35.
All of the shortest path three-, four- and five-membered rings in
the bond network are identified. These rings are then classified in
terms of those with an extra particle bonded to all of the particles
in the ring and those that have two or no such extra particles.
We term these the basic LFSs, into which many of the larger LFSs
can be decomposed. A given particle may be a member of more
than one basic LFS, that is, basic LFSs may overlap. We use this
strategy to identify all of the LFSs with 13 or less particles. The LFSs
we consider are shown in Supplementary Information, Fig. S1. In
addition, we identify the f.c.c. and hexagonal close-packed (h.c.p.)
13-particle structures in terms of a central particle and its 12 nearest
neighbours. If a particle was found to be part of more than one LFS
size, it was labelled as part of the larger size, and the association
with the smaller ignored. For more details, see ref. 28.

Having outlined our method, we proceed to the results.
Real-space confocal microscope images are shown in Fig. 1a–c.
At low polymer concentrations, a colloidal liquid is seen
(Fig. 1a,b); higher concentrations lead to a dynamically arrested
network, or gel, (Fig. 1c), with large-scale structure consistent
with arrested spinodal decomposition4. The radial distribution
function illustrates the change in structure resulting from the
increasing levels of attraction, with a rise in the first-, and higher
order maxima, accompanied by a shift to smaller separations,
shown in Supplementary Information, Fig. S3. The mean squared
displacement (MSD) is shown in Fig. 1f. This shows typical
characteristics of dynamical arrest, and leads us to a definition
of the polymer concentration cP required for gelation cPG. At low
polymer concentration, cP/cPG < 1, we find a diVusive liquid;
higher polymer concentration, cP/cPG > 1, leads to dynamical
arrest, where only very local displacements are observed.

Figure 1d shows the distribution of the bond-orientational
order parameter W6. These exhibit little change, only a fractional
shift to negative values, consistent with a slight increase in five-fold
symmetry, for moderate polymer concentrations. Our data are in
line with that of ref. 23 in that W6 may not change greatly on arrest.
However, dynamical arrest certainly occurs (Fig. 1f).

We now consider direct measurement of LFSs using the
topological cluster classification. Figure 2a shows LFSs in a liquid,
cP/cPG = 0.73 ± 0.04. The LFSs are readily identified, but, at
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creation of local “global minima” 
leads to gel formation
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Colloidal particles (colloids)

✤ Colloidal particles: diameters ~ 10-8-10-6 m. (≫ atoms, ≪ scales of humans)

✤ Range of interaction ≪ diameter of particles (unlike atoms)
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Small clusters of colloids like to be asymmetric 

bilities of these packings at finite temperature,
which allows us to map the free-energy land-
scape (18, 19, 11). All of the observed cluster
structures agree with the theoretical predictions.
For example, for N < 6, we observed one unique
structure for each N: a dimer for N = 2, trimer for
N = 3, tetrahedron for N = 4, and triangular
dipyramid for N = 5. The optical micrographs in
Fig. 1 show the structures of the smallest clusters.

The first interesting case is N = 6. We ob-
served two structures (Fig. 2 and fig. S2), both
with C = 12 contacts and therefore equivalent
potential energy. The first is the octahedron, a
Platonic solid. The second, we call a “polytetra-
hedron.” It consists of a triangular dipyramid with
a third tetrahedron added to one of the faces. We
observed transitions between the two states on
time scales of minutes, indicating that the system
is at equilibrium (movie S1).

Although these two structures have the same
potential energies, the polytetrahedron occurs
about 20 times more often than the octahedron,
implying a free-energy difference of about 3kBT.
This difference can be attributed only to entropy.
As shown in Fig. 2, the measured probabilities
for the two structures agree well with theoretical
calculations based on standard approximations
for the rotational and vibrational entropies in the
classical limit (14).

The rotational entropy makes the largest con-
tribution to the free-energy difference between
the two structures (fig. S2). The rotational partition
function is related to two geometrical quantities:
the number of orientations, which is proportional
to the moment of inertia, and the rotational sym-
metry of the cluster, or, alternatively, the number
of ways one can assemble the same cluster by
permuting particle labels (20). Formally, the ra-
tio of the permutational degeneracies of two
clusters is inversely proportional to the ratio of
their symmetry numbers (21). This permutation-
al degeneracy accounts for a factor of 12 in the
polytetrahedron:octahedron probability ratio.
The remaining factor of 2 comes from the differ-
ences in the moments of inertia and the vibra-
tional entropies.

This result illustrates a general rule for clus-
ters with short-range attractions: among clusters
with the same potential energy, highly symmetric
structures are extremely unfavorable at equilibri-
um. By contrast, for the longer-ranged Lennard-
Jones 6-12 potential, the octahedron has lower
potential energy than the polytetrahedron does
(17), so that the dominant structure depends on
temperature. The dominance of the polytetrahe-
dron in our system may have consequences for
nucleation; the equilibrium phase of attractive
hard spheres is a face-centered cubic (FCC) crys-
tal (15), which contains octahedral, not polytet-
rahedral, subunits.

At N = 7, the first chiral structures arise. We
observed six cluster structures, two of which are
chiral enantiomers. The experimental measure-
ments agree well with the theoretical values for
the probabilities of each structure (Fig. 2). For

these small clusters, the most pronounced influ-
ence on the probabilities comes from symmetry.
At N = 8, 3 of the 16 different possible sphere
packings never occur in the experiments. These
three structures have the highest symmetry num-
bers, s = 4, 6, and 12.

A few structures differ by such small changes
in particle spacing that we cannot differentiate
between them using our microscope. All of these
are variants of pentagonal dipyramids. In a pen-
tagonal dipyramid of seven spheres, the top and
bottom spheres of the pyramid are separated by a
small gap of ≈ 0.05d, where d is the sphere di-
ameter. If these two spheres are brought togeth-
er, a gap of ≈ 0.09d opens between two of the

spheres on the pentagon. Because we cannot re-
solve this gap in our experiments, we have binned
these structures together at bothN = 7 and N = 8.
The one statistically significant discrepancy be-
tween experiment and theory occurs at N = 8; it
arises because the experimental potential has a
range that is comparable to the gap distance. Al-
though we account for this extra potential energy
in the probability calculations, the probabilities
are sensitive to the magnitude of the potential at
the gap distance. If the interaction energy differs
from our estimated value by only 0.1kBT in the
gap, the theoretical calculation falls within error
of the experimental value. This difference could
be due to polydispersity in either the depletant
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Fig. 2. Comparison of experimental and theoretical (14) cluster probabilities P at N = 6, 7, and 8.
Structures that are difficult to differentiate experimentally have been binned together atN = 7 and 8 to
compare to theory. The calculated probabilities for the individual states are shown as light gray bars, and
binned probabilities are dark gray. Orange dots indicate the experimental measurements, with 95%
confidence intervals given by the error bars (14) (table S1). Renderings and point groups in Schönflies
notation are shown for each structure. The number in the subscript of each symbol indicates the order of
the highest rotational symmetry axis, and the letter indicates the symmetry group. The highest symmetry
structures are those in D, T, and O groups. Structures in C1 and C2 groups occur in chiral pairs.
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The Free-Energy Landscape of
Clusters of Attractive Hard Spheres
Guangnan Meng,1 Natalie Arkus,2 Michael P. Brenner,2 Vinothan N. Manoharan1,2*

The study of clusters has provided a tangible link between local geometry and bulk condensed
matter, but experiments have not yet systematically explored the thermodynamics of the smallest
clusters. Here we present experimental measurements of the structures and free energies of
colloidal clusters in which the particles act as hard spheres with short-range attractions. We found
that highly symmetric clusters are strongly suppressed by rotational entropy, whereas the most
stable clusters have anharmonic vibrational modes or extra bonds. Many of these clusters are
subsets of close-packed lattices. As the number of particles increases from 6 to 10, we observe
the emergence of a complex free-energy landscape with a small number of ground states and many
local minima.

Anisolated system of 10 interacting atoms
or molecules will generally adopt a struc-
ture that differs in symmetry and average

energy from that of a bulk liquid, solid, or even a
system containing 100 particles. Yet the study of
such small clusters has shed light on a wide va-
riety of phenomena that are observed in the fields
of condensed-matter physics and physical chem-
istry. Since Frank first predicted (1) that icosahe-
dral short-range order would be a hallmark of
liquid structure, the study of small-cluster geom-
etry has provided key insights into the frustration
underlying nonequilibrium phenomena such as
nucleation and the glass transition (2–4). Exper-
imental studies (5, 6) have confirmed this ap-
proach through the discovery of local cluster-like
order in bulk liquids and glasses, with recent re-
sults (7) suggesting that structural arrest in con-
densed phases may be related to geometrical
constraints at the scale of a few particles.

There remain many unresolved questions
about cluster geometry and its connection to bulk
behavior. Although experiments and simulations
have determined the minimum potential-energy
clusters for various interactions (8–10), the like-
lihood of observing a particular cluster structure
depends on its free energy (11, 12). What cluster
structures are favored by entropy? How does the
competition between potential energy and entropy
evolve as the number of particles N approaches
the bulk limit? Experiments on atomic clusters
have not systematically explored these questions;
they are limited by short cluster lifetimes, non-
equilibrium conditions, and the difficulties of ob-
taining real-space structures of individual clusters
in free space (13).

Here we report experimental results for the
structures and free energies of small equilibrium
clusters as a function of N, with N ≤ 10. The
experimental system is described in Fig. 1. We
use colloidal particles rather than atoms, because

we can precisely control the interactions and di-
rectly observe the three-dimensional (3D) struc-
tures of the clusters using optical microscopy. To
a good approximation, our particles act as “sticky”
hard spheres, arguably the simplest nontrivial
interaction that leads to clustering. The attraction
arises from a depletion interaction with a range of
about 1.05 times the particle diameter and a depth
of about 4kBT, where kB is Boltzmann’s constant
and T is temperature. Because the pair potential
is short-ranged, the total potential energyU of a
given structure is well approximated by U =
CUm, where C is the number of contacts or de-
pletion bonds and Um is the depth of the pair po-
tential (14). Although these particles form a gel

in bulk, the range and depth of the interaction are
consistent with an equilibrium phase diagram
showing a fluid-to-crystal transition (15).

We created clusters by isolating small numbers
of polystyrene (PS) microspheres in cylindri-
cal microwells filled with water and poly(N-
isopropylacrylamide) (polyNIPAM) nanoparticles,
which cause the depletion interaction. We chem-
ically functionalized the microwells so that par-
ticles could not stick to the surfaces. This allows
3D clusters to form in the middle of the wells,
unaffected by the boundaries. After the clusters
reached equilibrium, we used optical microscopy
to observe the cluster structures, and we collected
statistics by scanning through the microwell plate,
which contains thousands of isolated clusters.
Although the number of particles per well is not
controlled, we generated enough clusters at each
value of N ≤ 10 to measure their occurrence
frequencies. We then determined the free ener-
gies from the ensemble statistics through the
Boltzmann distribution, DF = −kBTlnP, where
P is the probability of observing a given cluster.

We classified our clusters by comparing them
to finite sphere packings. A previous theoretical
study (16) enumerated the mechanically stable
clusters of idealized hard spheres with infini-
tesimally short-ranged interactions, revealing the
minima of the potential-energy landscape as a
function ofN. All of the minima at each value of
N ≤ 9 have the same potential energy, which is
a result not observed with longer-ranged poten-
tials (17). We explored the structures and proba-

1Department of Physics, Harvard University, Cambridge, MA
02138, USA. 2Harvard School of Engineering and Applied
Sciences, Harvard University, Cambridge, MA 02138, USA.

*To whom correspondence should be addressed. E-mail:
vnm@seas.harvard.edu
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Fig. 1. (A) Diagram of experimental system (14). We used lithography to make microwells with depth
and diameter of 30 mm (see also fig. S1). These are filled with a suspension of 1.0-mm-diameter PS
spheres and 80-nm polyNIPAM microgel particles, which induce a depletion attraction as illustrated in
(B). The number of PS particles per well varies, but the average is about 10. (C) Pair potential as
estimated from the Vrij approximation to the Asakura-Oosawa potential (28, 29). Because the range of
the depletion attraction is less than 1/10 of the PS sphere diameter, the interaction is strictly pairwise
additive. (D) Optical micrograph of microwells with assembled colloidal clusters suspended inside. The
circles highlight individual clusters in different microwells. There are about 104 microwells per slide.
Scale bar, 20 mm. (E) High-magnification optical micrographs of colloidal clusters in microwells with
N = 2, 3, 4, and 5 particles. These are the only structures that form for N ≤ 5. Scale bar, 1 mm.
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Fig. S2. Comparison of polytetrahedral and octahedral clusters at N = 6. Top shows optical micrographs
and renderings of the two structures with point groups indicated in Schönflies notation, and bottom the en-
tropic contributions to the probability of each. Zr is the rotational partition function and Zv the vibrational
partition function. The predicted probability of formation is calculated from the product ZvZr. The main
contribution to the probability comes from the rotational partition function through the symmetry num-
ber. The calculated ratio of probabilities is 24 : 1, which agrees well with the experimental data (see also
Table S1).
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Fig. 1. (A) Diagram of experimental system (14). We used lithography to make microwells with depth
and diameter of 30 mm (see also fig. S1). These are filled with a suspension of 1.0-mm-diameter PS
spheres and 80-nm polyNIPAM microgel particles, which induce a depletion attraction as illustrated in
(B). The number of PS particles per well varies, but the average is about 10. (C) Pair potential as
estimated from the Vrij approximation to the Asakura-Oosawa potential (28, 29). Because the range of
the depletion attraction is less than 1/10 of the PS sphere diameter, the interaction is strictly pairwise
additive. (D) Optical micrograph of microwells with assembled colloidal clusters suspended inside. The
circles highlight individual clusters in different microwells. There are about 104 microwells per slide.
Scale bar, 20 mm. (E) High-magnification optical micrographs of colloidal clusters in microwells with
N = 2, 3, 4, and 5 particles. These are the only structures that form for N ≤ 5. Scale bar, 1 mm.
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Large collections of colloids like to form crystals

 
When and how does the transition from 
“small” (disordered) to “large” (ordered) 

happen?



✤ Model colloids as sticky: interacting with infinitesimally short-ranged pair 
potential
★ Allows geometry to be used in statistical mechanics

✤ Consider finite # N of particles (“cluster")
✤ Characterize free energy landscape of clusters of sticky particles  

—>  via local minima

Colloids —> Sticky particles

The Free-Energy Landscape of
Clusters of Attractive Hard Spheres
Guangnan Meng,1 Natalie Arkus,2 Michael P. Brenner,2 Vinothan N. Manoharan1,2*

The study of clusters has provided a tangible link between local geometry and bulk condensed
matter, but experiments have not yet systematically explored the thermodynamics of the smallest
clusters. Here we present experimental measurements of the structures and free energies of
colloidal clusters in which the particles act as hard spheres with short-range attractions. We found
that highly symmetric clusters are strongly suppressed by rotational entropy, whereas the most
stable clusters have anharmonic vibrational modes or extra bonds. Many of these clusters are
subsets of close-packed lattices. As the number of particles increases from 6 to 10, we observe
the emergence of a complex free-energy landscape with a small number of ground states and many
local minima.

Anisolated system of 10 interacting atoms
or molecules will generally adopt a struc-
ture that differs in symmetry and average

energy from that of a bulk liquid, solid, or even a
system containing 100 particles. Yet the study of
such small clusters has shed light on a wide va-
riety of phenomena that are observed in the fields
of condensed-matter physics and physical chem-
istry. Since Frank first predicted (1) that icosahe-
dral short-range order would be a hallmark of
liquid structure, the study of small-cluster geom-
etry has provided key insights into the frustration
underlying nonequilibrium phenomena such as
nucleation and the glass transition (2–4). Exper-
imental studies (5, 6) have confirmed this ap-
proach through the discovery of local cluster-like
order in bulk liquids and glasses, with recent re-
sults (7) suggesting that structural arrest in con-
densed phases may be related to geometrical
constraints at the scale of a few particles.

There remain many unresolved questions
about cluster geometry and its connection to bulk
behavior. Although experiments and simulations
have determined the minimum potential-energy
clusters for various interactions (8–10), the like-
lihood of observing a particular cluster structure
depends on its free energy (11, 12). What cluster
structures are favored by entropy? How does the
competition between potential energy and entropy
evolve as the number of particles N approaches
the bulk limit? Experiments on atomic clusters
have not systematically explored these questions;
they are limited by short cluster lifetimes, non-
equilibrium conditions, and the difficulties of ob-
taining real-space structures of individual clusters
in free space (13).

Here we report experimental results for the
structures and free energies of small equilibrium
clusters as a function of N, with N ≤ 10. The
experimental system is described in Fig. 1. We
use colloidal particles rather than atoms, because

we can precisely control the interactions and di-
rectly observe the three-dimensional (3D) struc-
tures of the clusters using optical microscopy. To
a good approximation, our particles act as “sticky”
hard spheres, arguably the simplest nontrivial
interaction that leads to clustering. The attraction
arises from a depletion interaction with a range of
about 1.05 times the particle diameter and a depth
of about 4kBT, where kB is Boltzmann’s constant
and T is temperature. Because the pair potential
is short-ranged, the total potential energyU of a
given structure is well approximated by U =
CUm, where C is the number of contacts or de-
pletion bonds and Um is the depth of the pair po-
tential (14). Although these particles form a gel

in bulk, the range and depth of the interaction are
consistent with an equilibrium phase diagram
showing a fluid-to-crystal transition (15).

We created clusters by isolating small numbers
of polystyrene (PS) microspheres in cylindri-
cal microwells filled with water and poly(N-
isopropylacrylamide) (polyNIPAM) nanoparticles,
which cause the depletion interaction. We chem-
ically functionalized the microwells so that par-
ticles could not stick to the surfaces. This allows
3D clusters to form in the middle of the wells,
unaffected by the boundaries. After the clusters
reached equilibrium, we used optical microscopy
to observe the cluster structures, and we collected
statistics by scanning through the microwell plate,
which contains thousands of isolated clusters.
Although the number of particles per well is not
controlled, we generated enough clusters at each
value of N ≤ 10 to measure their occurrence
frequencies. We then determined the free ener-
gies from the ensemble statistics through the
Boltzmann distribution, DF = −kBTlnP, where
P is the probability of observing a given cluster.

We classified our clusters by comparing them
to finite sphere packings. A previous theoretical
study (16) enumerated the mechanically stable
clusters of idealized hard spheres with infini-
tesimally short-ranged interactions, revealing the
minima of the potential-energy landscape as a
function ofN. All of the minima at each value of
N ≤ 9 have the same potential energy, which is
a result not observed with longer-ranged poten-
tials (17). We explored the structures and proba-

1Department of Physics, Harvard University, Cambridge, MA
02138, USA. 2Harvard School of Engineering and Applied
Sciences, Harvard University, Cambridge, MA 02138, USA.

*To whom correspondence should be addressed. E-mail:
vnm@seas.harvard.edu
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Fig. 1. (A) Diagram of experimental system (14). We used lithography to make microwells with depth
and diameter of 30 mm (see also fig. S1). These are filled with a suspension of 1.0-mm-diameter PS
spheres and 80-nm polyNIPAM microgel particles, which induce a depletion attraction as illustrated in
(B). The number of PS particles per well varies, but the average is about 10. (C) Pair potential as
estimated from the Vrij approximation to the Asakura-Oosawa potential (28, 29). Because the range of
the depletion attraction is less than 1/10 of the PS sphere diameter, the interaction is strictly pairwise
additive. (D) Optical micrograph of microwells with assembled colloidal clusters suspended inside. The
circles highlight individual clusters in different microwells. There are about 104 microwells per slide.
Scale bar, 20 mm. (E) High-magnification optical micrographs of colloidal clusters in microwells with
N = 2, 3, 4, and 5 particles. These are the only structures that form for N ≤ 5. Scale bar, 1 mm.
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What do local minima look like?

Spheres are either touching, or not

Energy of cluster of N spheres ∝ -(# of contacts)

Lowest-energy clusters = those with maximal number of contacts

These are (typically) rigid: they cannot be continuously deformed without 
breaking a contact (=crossing an energy barrier.)

More generally: energetic local minima have a locally maximal number of 
contacts, so are (typically) rigid.
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DERIVING FINITE SPHERE PACKINGS 9

(a) (b)

!"

#

$

%&'('

Figure 4. Example of an Unphysical Adjacency Matrix. (a) An adjacency
matrix that is unphysical because it implies more than 2 intersections of intersection
circles. The blue highlights show that particles 4,5,6 make up a trimer. The purple
highlighted part shows that particles 1, 2, and 3 all touch the same trimer, 4,5,6.
(b) A sphere packing corresponding to this unphysical adjacency matrix (shown in
both sphere and point/line representations). For it to be realized, 2 particles must
occupy the same point in space.

3.2.2. Rule 2. A trimer, a configuration of 3 spheres forming an equilateral triangle, is associated
with 3 mutually intersecting intersection circles (Fig. 5a). These 3 intersection circles intersect at
2 points (shown in red). Here we calculate the distance between these 2 intersection points.
Note that a particle lying at one of the intersection points forms the 4-particle packing (the

tetrahedron). And that 2 particles, lying at each intersection point, form the 5-particle packing
(the 5-point polytetrahedron). The distance between these 2 intersection points, h, is the only
distance that is greater than R in the 5-particle packing (Fig. 6).
To calculate this distance, we note that the trimer and its associated intersection circles form

the set of triangles shown in figure 5b (where the dashed line indicates an out-of-plane triangle).
We calculate a by considering the right triangle with sides

p
3/2R � a, a, 1/2R. Trigonometry

then implies that a = R/(2
p
3), and h = 2

p
2/3R.

This implies that the solution to an adjacency matrix corresponding to the 5-particle packing
is

0

BBBB@

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 0
1 1 1 0 0

1

CCCCA
�!

0

BBBBBB@

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1

1 1 1 0 2
q

2
3

1 1 1 2
q

2
3 0

1

CCCCCCA

where the right matrix is the corresponding distance matrix, D, and without loss of generality we
have let R = 1. For n = 5, there is only 1 non-isomorphic minimally-rigid A.

We can formalize this construction as a distance rule, which can be used whenever a submatrix
of some A has the same structure as the 5-particle packing. Such submatrices can be identified
with the following pattern: A

ij

= A
ik

= A
kj

= 1, and there exist 2 points p for which A
pi

=
A

pj

= A
pk

= 1. Whenever this pattern exists, the distance submatrix between the associated
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6 Particle Packings

Packing 1 (Graph 2):
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Packing 2 (Graph 4):

A :

0

BBBBBB@

0 0 1 1 1 1
0 0 1 1 1 1
1 1 0 0 1 1
1 1 0 0 1 1
1 1 1 1 0 0
1 1 1 1 0 0

1

CCCCCCA

D :

0

BBBBBB@

0
⇤

2 1 1 1 1⇤
2 0 1 1 1 1

1 1 0
⇤

2 1 1
1 1

⇤
2 0 1 1

1 1 1 1 0
⇤

2
1 1 1 1

⇤
2 0

1

CCCCCCA
R

C :

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0
0
0
1
�1
0
0
�1
0
1
0
0

1/2
�1/2⇤

2/2
1/2
�1/2
�
⇤

2/2

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

R

2nd Moment ⇥ � Special Properties
⇥3.0R2 Oh 24 New Seed

Convex

DERIVING FINITE SPHERE PACKINGS 27

28 NATALIE ARKUS, VINOTHAN N. MANOHARAN AND MICHAEL P. BRENNER

6 Particle Packings

Packing 1 (Graph 2):

A :

0

BBBBBB@

0 0 1 1 1 1
0 0 0 1 1 1
1 0 0 0 1 1
1 1 0 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

1

CCCCCCA

D :

0

BBBBBBBBBB@

0 2
q

2
3 1 1 1 1

2
q

2
3 0 5

3 1 1 1

1 5
3 0 2

q
2
3 1 1

1 1 2
q

2
3 0 1 1

1 1 1 1 0 1
1 1 1 1 1 0

1

CCCCCCCCCCA

R

C :

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

4/(3
⇥

3)
1/3

(2/3)
p

2/3
0
�1
0

20/(9
⇥

3)
�4/9

(10/9)
p

2/3
0
0
0

1/(2
⇥

3)
�1/2p

2/3⇥
3/2

�1/2
0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

R

2nd Moment ⇥ � Special Properties
3.35185R2 C2v 2

DERIVING FINITE SPHERE PACKINGS 29

Packing 2 (Graph 4):
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2 rigid clusters for N=6



Energy landscape with very short-range interactions

Traditional energy landscape

Colloidal energy landscape

Sticky energy landscape



Outline

✤ Rigidity — review: What is rigid? And how can we test it? 

✤ Sphere packings: What are all the ways to arrange N identical spheres 
into a rigid cluster?

✤ Statistical mechanics: What are the free energies / probabilities to find 
each cluster, in equilibrium? 



Rigidity — Review

What is a rigid cluster (rigid graph), and how can we test it? 



What is rigid? 

Each adjacency matrix corresponds to a system of quadratic equations and 
inequalities (xi ∊ℝ3):

0

BBBBBB@

0 0 1 1 1 1
0 0 0 1 1 1
1 0 0 0 1 1
1 1 0 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

1

CCCCCCA

adjacency matrix A

|xi � xj |2 = d

2 if Aij = 1

|xi � xj |2 � d

2 if Aij = 0

A cluster (x,A) with x = (x1, x2, …, xN) is rigid if it is an isolated solution to this 
system of equations (modulo translations, rotations)     (e.g. Asimow&Roth 1978)  
⟺ There is no finite, continuous deformation of the cluster that preserves all 
edge lengths.



How to test for rigidity?

Testing the full definition is co-NP hard       (Abbott, Master’s Thesis, 2008)

We will introduce stronger notions of rigidity:  
 (based on Connelly & Whiteley, 1996)

First-order rigid (too strong/too easy)

Second-order rigid (too weak / too hard)

Prestress stability (just right)



First-order rigid

Let p(t) be a continuous, analytic deformation of cluster with p(0) = x

Take d/dt|t=0 of  

 Result is                                                                      

Write system as  
                                                                                          (*1) 

R(x) is the rigidity matrix. 

p’ = p’(0) is the set of velocities we give to the nodes, to deform cluster 
infinitesimally. 

A cluster is first-order rigid if there are no solutions p’ to (*1) except trivial solutions 
(infinitesimal translations, rotations)

A non-trivial solution p’ to (*1) is a flex

|xi � xj |2 = d

2
ij

(xi � xj) · (p0i � p

0
j) = 0

R(x)p0 = 0



Theorem: (x,A) is first order rigid ⇒ (x,A) is rigid 
(consequence of Implicit Function Theorem, if isostatic)

Easy to test first order rigid

But too restrictive!

 
 
 

                                                       rigid

1st-order rigid

first-order rigid (in R2) 
floppy (in R3)

floppy (in R2,R3)

rigid (R2)
not first-order rigid (R2) 

& Toys!!



Second-order rigid

|xi � xj |2 = d

2
ijTake d2/dt2|t=0  of

Result is

Write as 
                                                                                                             

A cluster is second-order rigid if there are no solutions (p’,p’’) to (*2), except 
where p’ is trivial. 

Theorem (Connelly & Whiteley 1996):  
(x,A) is second-order rigid ⇒ (x,A) is rigid.

Testing second-order rigidity is hard!  
No efficient method to do this. 

R(x)p00 = �R(p0)p0, R(x)p0 = 0 (⇤2)

(xi � xj) · (p00i � p

00
j ) = �(p0i � p

0
j) · (p0i � p

0
j)

 
 
 

                                                      rigid
second-order rigid

1st-order 
rigid



Prestress stability

(x,A) is prestress stable (PSS) if    
 
           ∃ w ∊ Null(RT(x))   s.t.    wTR(p’)p’ > 0      ∀ p’ ∊𝓥, p’≠ 0           (*pss)  
 
𝓥 = space of non-trivial flexes (solutions p’ to R(x)p’=0)

(x,A) is PSS ⇒ (x,A) is second-order rigid ⇒ (x,A) is rigid
 
 
 

                                                       rigid
second-order rigid

prestress 
stable1st-order rigid

R(x)p00 = �R(p0)p0, R(x)p0 = 0 (⇤2)



What is Null(RT) physically? 

An element w ∊ Null(RT(x)) is a self-stress

Physically a self-stress is a set of spring constants on edges to put them under 
tension or compression, so there is not net force on the system

If deform with a flex, “energy” of this spring system increases.  
 
 
 
 
 
 

compression

tension

Connelly & Whiteley (1996)



Sphere packings

H.-C. (2016)  SIAM Review

What are all the rigid clusters of N identical spheres? 



Previous approaches

(1)  List all adjacency matrices with 3N-6 contacts

(2)  For each adjacency matrix, solve (analytically or with computer) for the 
positions of the particles, or argue that no solution exists.

• N. Arkus, V. N. Manoharan, M. P. Brenner. Phys. Rev. Lett., 103 (2009)
• N. Arkus, V. N. Manoharan, M. P. Brenner. SIAM J. Disc. Math., 25 (2011)
• R. S. Hoy, J. Harwayne-Gindansky, C. O’Hern, Phys. Rev. E, 85 (2012)
• R. S. Hoy, Phys. Rev. E, 91 (2015)

Analytical: to N=10 
Computer: to N=13 (though many were missed)

Problems:
LOTS of adjacency matrices: ≈ 2n(n-1)/2

How to solve equations? 
analytical — really hard
computer — can’t guarantee found solutions
Degree of equations is VERY high (≈ 23N-6 !)



A different algorithm

Move from cluster to cluster dynamically

H.-C. (2016)  SIAM Review



Algorithm

✤ Start with a single rigid cluster
✤ Break all subsets of bonds that give a cluster with one internal degree of 

freedom*.
✤ For each subset, move on this internal degree of freedom until another bond is 

formed.
✤ If resulting cluster is rigid (pss), add to list.
✤ Repeat for all clusters in list. Stop when reach end of list. 

* Testing for one dof is hard.



N = 2:

N = 3:

N = 4:

N = 5:

N = 6:

N = 7:

2 packings

5  packings 
(+1 chiral)



N = 8:

13 packings 
3 chiral pairs



N = 9:



52 packings 
28 chiral pairs



Total grows as ≈ 2.5(N - 5)! FASTER than exponential —> non-extensive?
(why? is this provable/disprovable?) e.g. Stillinger (1984,1995), Frenkel (2014), etc.

exponential! (Kallus & H.C., In Prep.)



Total number of clusters computed
4 TEX PRODUCTION

n number of contacts
3n� 9 3n� 8 3n� 7 3n� 6 3n� 5 3n� 4 3n� 3 3n� 2 Total

5 1 1
6 2 2
7 5 5
8 13 13
9 52 52
10 1 259 3 263
11 2 18 1618 20 1 1659
12 11 148 11,638 174 8 1 11,980
13 87 1221 95,810 1307 96 8 98,529
14 1 707 10,537 872,992 10,280 878 79 4 895,478

3n� 4 3n� 3 3n� 2 3n� 1 3n 3n+ 1 3n+ 2
15 7675 782 55 6 (9⇥ 106 est.)
16 7895 664 62 8 (1⇥ 108 est.)
17 7796 789 85 6 (1.2⇥ 109 est.)
18 9629 1085 91 5 (1.6⇥ 1010 est.)
19 13,472 1458 95 7 (2.2⇥ 1011 est.)

Table 1
Number of clusters found for each n, organized by number of contacts in each cluster. For

n � 15 only clusters with a minimum number of contacts were enumerated.

where R(x) is the Jacobian of (2.1), called the rigidity matrix. If the right null space
of R(x) is empty, we cannot solve for p0(0) so the cluster is infinitestimally rigid, or
first-order rigid. This is su�cient for rigidity [13].

This is a linear criterion, so we will sometimes say “linearly rigid” or “linearly
floppy.” A cluster that is linearly floppy may or may not be rigid. The right null
space of the rigidity matrix gives the linear deformations of the cluster, and to check
whether these are extendable to finite deformations we must continue the expansion
to higher order.

Taking two derivatives of (2.1) gives

(2.3) R(x)p00|t=0 = �R(p0)p0|t=0.

By the Fredholm alternative, we can solve for p00(0) if and only if there exists v 2 V
such that wTR(v)v = 0 for all w 2 W, where V,W are the right and left null spaces
of R(x). When this condition does not hold, the cluster is second-order rigid and this
is also su�cient for rigidity [13]. Finding a w for each v to make the inner product
non-zero is a challenge, but sometimes it is possible to find a single w that works for
all v. This happens when wTR(v)v is sign-definite for v 2 V , and then the cluster
is pre-stress stable. It is possible to find such a w by semi-definite programming
methods, for example. See Supplementary Information (SI) for details about how we
implement this.

To compute the number of internal degrees of freedom of a cluster when it is
not pre-stress stable, we use a numerical method that estimates the dimension of the
solution set by taking small steps in each of the candidate tangent directions. See SI
for more details.

2.2. Enumeration algorithm. We search for rigid clusters by following all
the one-dimensional transition paths between clusters. We begin with a single rigid
cluster of n spheres. This is easy to obtain, for example by gluing a sphere with
three contacts to a cluster of n� 1 spheres. Next we break a contact on this cluster,
by deleting a single equation in (2.1). Typically, this makes a cluster with a single
internal degree of freedom, i.e. the set of solutions to the reduced system of equations

hyperstatic

H.-C. (2016)  SIAM Review

(N=20,21 also; data not shown)





Some scaling laws

Why all these exponential scaling laws?  
Do the exponents approach a common value as N→∞ ?

can explain using geometry, combinatorics, random matrix theory, …?
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Total number of clusters computed
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Number of clusters found for each n, organized by number of contacts in each cluster. For

n � 15 only clusters with a minimum number of contacts were enumerated.

where R(x) is the Jacobian of (2.1), called the rigidity matrix. If the right null space
of R(x) is empty, we cannot solve for p0(0) so the cluster is infinitestimally rigid, or
first-order rigid. This is su�cient for rigidity [13].

This is a linear criterion, so we will sometimes say “linearly rigid” or “linearly
floppy.” A cluster that is linearly floppy may or may not be rigid. The right null
space of the rigidity matrix gives the linear deformations of the cluster, and to check
whether these are extendable to finite deformations we must continue the expansion
to higher order.

Taking two derivatives of (2.1) gives

(2.3) R(x)p00|t=0 = �R(p0)p0|t=0.

By the Fredholm alternative, we can solve for p00(0) if and only if there exists v 2 V
such that wTR(v)v = 0 for all w 2 W, where V,W are the right and left null spaces
of R(x). When this condition does not hold, the cluster is second-order rigid and this
is also su�cient for rigidity [13]. Finding a w for each v to make the inner product
non-zero is a challenge, but sometimes it is possible to find a single w that works for
all v. This happens when wTR(v)v is sign-definite for v 2 V , and then the cluster
is pre-stress stable. It is possible to find such a w by semi-definite programming
methods, for example. See Supplementary Information (SI) for details about how we
implement this.

To compute the number of internal degrees of freedom of a cluster when it is
not pre-stress stable, we use a numerical method that estimates the dimension of the
solution set by taking small steps in each of the candidate tangent directions. See SI
for more details.

2.2. Enumeration algorithm. We search for rigid clusters by following all
the one-dimensional transition paths between clusters. We begin with a single rigid
cluster of n spheres. This is easy to obtain, for example by gluing a sphere with
three contacts to a cluster of n� 1 spheres. Next we break a contact on this cluster,
by deleting a single equation in (2.1). Typically, this makes a cluster with a single
internal degree of freedom, i.e. the set of solutions to the reduced system of equations

hypostatic

H.-C. (2016)  SIAM Review

(N=20,21 also; data not shown)



A cluster “missing” one contact, N=10



cluster missing three 
contacts, N=14

clusters missing two contacts, 
N=11



# of contacts ~ 2N  when N large

cluster missing arbitrarily many contacts



Clusters with the same adjacency matrix

N=11

CLUSTERS WITH THE SAME ADJACENCY MATRIX

N=12



MORE CLUSTERS WITH THE SAME ADJACENCY MATRIX

How many?
n = 11: 1 (0.06%), n = 12: 23 (0.2%), n = 13: 474 (0.4%),
n = 14: 672 (0.075%)

4 clusters with the same adjacency matrix (N=14)

# adj. matrices with multiple copies: N=11 (1), N=12 (23), N=13 (474), N=14 (6672)



A “Third-order rigid” cluster (algebraic multiplicity = 3)
with Bob Connelly,  

Jonathan Hauenstein



Another higher-order rigid cluster



DOES THE ALGORITHM FIND EVERYTHING?

Nooooo..........

Here’s a cluster which can’t be reached by one-dimensional
transition paths:

....... but these are probably rare?

....... is a subset complete (eg regular clusters)?

No………  here’s an example:

Does the algorithm find everything?

N=11
hypostatic 

3N-7 contacts
hcp fragment

Cluster landscape looks like: 
Question: 
Is the landscape ever 
connected (by 1 dof 
motions), under additional 
assumptions?  
e.g. clusters are regular, 
isostatic, have random 
diameters, …. 



A peek into why we can’t find it

DOES THE ALGORITHM FIND EVERYTHING?

Nooooo..........

Here’s a cluster which can’t be reached by one-dimensional
transition paths:

....... but these are probably rare?

....... is a subset complete (eg regular clusters)?

(thanks to Louis Theran)

Recipe for making a cluster the algorithm can’t find (L. Theran):  
Make a cluster which is 

hypostatic
has a stress supported on all edges

Cut the stress —> cluster becomes regular, hence > 1 d.o.f.



Data contains lots of singular clusters

 Probability 11% in experiments! (out of 52 clusters total)

G. Meng, N. Arkus, M. P. Brenner, V. N. 
Manoharan, Science 327 (2010)

Singular cluster: rigid but not first-order rigid  
This is a nonlinear notion of rigidity.

Smallest singular cluster: N=9



N=10:  
singular 21%,  
hyperstatic 12% 
despite > 250 total clusters!

Is there a competition between 
singular, hyperstatic clusters as 

N increases? 

—> not symmetry number that 
matters, rather degree of 

singularity / hyperstaticity?



H.-C. (2016)  SIAM Review

Close-packing fragments

Singular clusters

N %

10 17%

11 7.2%

12 3.6%

13 1.6%

14 0.63%

N %

11 3%

12 2.9%

13 2.7%

14 2.5%



Statistical Mechanics

What is the probability of a cluster x in the sticky-sphere (short-ranged 
interaction) limit? 

M. H.-C., S. Gortler, M.P.Brenner, PNAS (2013)  
Y. Kallus, M. H.-C., Phys. Rev. E (2017)



Z

x

=

Z

N(x)
e

��V (x0)
dx

0

V(x) = energy of configuration x,                β = 1/kBT = inverse temperature  
N(x) = neighbourhood of x, including translations, rotations, permutations,           
             and bonds with lengths ∊ (d - ε, d + ε)

r

U(r)

d d+ε

U(d)

Range ε ≪ d
Depth U(d) ≫ 1

Sticky-sphere limit:

V(x) =  
X

i 6=j

U(|xi � xj |)

energy of a pair = U(|xi-xj|)      
xi=center of ith sphere,  
x=(x1,x2,…,xN)

Probability(cluster x) ∝ Partition function Zx

M. H.-C., S. Gortler, M.P. Brenner, PNAS (2013)  
Y. Kallus, M. H.-C., Phys. Rev. E (2017)



“Geometry” of the calculation

Asymptotically as ε —> 0:

Zx  ≈  Exp(# of contacts) * Volume(constraint intersection region)

B = # of bonds

Z

x

⇠ e

��BU(d)

Z

{�✏yk(x)✏}B
k=1

dx

constraints ``fattened’’ by ε

{x : yk(x) = 0} is hypersurface where sphere ik touches sphere jk

yk(x) = |xik � xjk |� 1 = excess bond distance between spheres ik, jk

→ ∞ 
“energy”

→ 0 
“entropy”



Example (regular)

x∊R2

y1(x) = v1·x = 0

y2(x) = v2·x = 0

Vol(M)  =   4| v1 ╳ v2 |-1 ε2

“Regular” constraints should have volumes that scale as  
εdimension of intersection set

Want volume of region

M = { -ε < y1(x), y2(x)  < ε }



Example (singular)

x∊R2 

y1(x) = x2 
y2(x) = (x1)2 - x2

Vol = ✏3/2
ZZ

�1Y11
�1Y21

1

2

p
Y1 + Y2

dY1dY2 = ✏3/2 ·O(1)

@Y

@x

= 2✏�3/2
p
Y1 + Y2

Y1 = y1/ε  
Y2 = y2/ε1/2

Change variables:



Vol(Example 2)

Vol(Example 1)

⇠ 1

✏1/2
% 1 as ✏ ! 0

—> Free energy of singular clusters should dominate that of regular 
clusters (with the same number of contacts), in the sticky-sphere limit.

Physically, they have more entropy. 



Example (hyperstatic)

x∊R2

y1(x) = v1·x

y2(x) = v2·x

y3(x) = v3·x

Vol  ∝  ε2 Z
x

/ e�3�U(d)✏2



Z
x

(hyperstatic example)

Z
x

(regular example)

/ e��U(d) ! 1 as U(d) ! �1

—> Free energy of hyperstatic clusters should dominate that of 
regular clusters, in the sticky-sphere limit.

 
Physically, they have lower energy. 

Who wins: singular clusters or hyperstatic clusters, as N →∞ ?

Zx  ≈  Exp(# of contacts) * Volume(constraint intersection region)



General case

Algebraic geometry: 

Vol ⇠ ✏q(log ✏)k, q 2 Q, k 2 Z

q,k related to the algebraic nature of the singularity, i.e. what it looks like 
once it is “resolved”
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We establish asymptotic formulas for volumes of height balls in analytic varieties over
local fields and in adelic points of algebraic varieties over number fields, relating the
Mellin transforms of height functions to Igusa integrals and to global geometric invariants
of the underlying variety. In the adelic setting, this involves the construction of general
Tamagawa measures.
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1. Introduction

The study of rational and integral points on algebraic varieties defined over a num-
ber field often leads to considerations of volumes of real, p-adic or adelic spaces. A
typical problem in arithmetic geometry is to establish asymptotic expansions, when
B → ∞, for the number Nf(B) of solutions in rational integers smaller than B of
a polynomial equation f(x) = 0.

When applicable, the circle method gives an answer in terms of a “singular
integral” and a “singular series”, which itself can be viewed as a product of p-adic
densities. The size condition is only reflected in a parameter in the singular integral,
whose asymptotic expansion therefore governs that of Nf (B).

More generally, one considers systems of polynomial equations, i.e. algebraic
varieties over a number field or schemes of finite type over rings of integers, together
with embedding into a projective or affine space. Such an embedding induces
a height function (see, e.g. [34, 43, 30]) such that there are only finitely many
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How does the free energy of singular clusters scale with ε?



Our approach

Taylor-expand the potential V(x) = 

Evaluate integral using Laplace asymptotics

Asymptotically the same scaling as square-well potential:  
log(Zsquare) ~ log(Zx)    as ε→0, U(d)→∞                    (Kallus & H.-C., Phys Rev E (2017))

X

i 6=j

U(|xi � xj |)

Z

x

=

Z

N(x)
e

��V (x0)
dx

0



Partition function for second-order rigid cluster

Only TWO parameters needed! 

where the geometrical part is

� = e��U(d)

↵ = (U 00(d)�d2)1/4

parameters are geometry-dependent variables are

M. H.-C., S. Gortler, M.P.Brenner, PNAS (2013)  
Y. Kallus, M. H.-C., Phys. Rev. E (2017)

z

x

= (const) ·
p

I(x)

�

Y

�i 6=0

�

�1/2

i

(x)

Z

X

e

�Q(x̃)
d

˜

x

∆B  = # of bonds beyond isostatic (=B-(3N-6))  
dX = # of singular directions  
I(x)  = determinant of moment of inertia tensor  
σ  = symmetry number  
𝝺i(x) = eigenvalues of ∇∇V = R(x)RT(x)  
Q(x) = quartic function on space X of singular 
directions

# of singular directions# of bonds beyond  
3N-6

Exp(depth) width-1/2

Z
x

= ��B↵dXz
x



N=14

regular

κ=10

κ=103

maximum bonds

most hypostatic, 
most singular

hyperstatic, 
singular

hypostatic, 
singular

hypostatic, 
singular

hypostatic, 
singular

log α 
(width-1/2)

log γ  
(depth)



N=15-21
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Conclusions / Outlook

Hyperstatic  >  Singular    (empirically*, for identical spheres)          *(no floppy)

Why? ∃ underlying geometric, or statistical, reason?

High temperature —> disorder. Critical temperature predicted by geometry. 

Do other systems favour singular, or hypostatic structures (e.g. non-identical 
spheres, ellipses, ….?)

Computational challenges still remain

Efficiently determining rigidity, in the presence of “noise” (numerical error)

Efficiently determining “floppiness”: degrees of freedom, and “true” tangent 
space

Algorithm gives us (leading-order) Transition Rates! 

Predictions agree with our experiments
(R. W. Perry, M. H.-C., M. P. Brenner, V. N. Manoharan, PRL (2015))


