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Guiding motivation:

Physics is interesting because we live in 3 dimensions

—> Geometrical Frustration



What is Geometrical Frustration?

D. Nelson, F. Spaepen, Solid State Phys. 42, 1 (1989)
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Geometric frustration: locally preferred order = globally preferred order



Frustration —> disordered phases

crystal glass

(D. Weitz, Webpage) C. Patrick Royall, S. R. Williams, T. Ohtsuka, H. Tanaka,
Nat. Mater. 7, 556 (2008)

creation of local “global minima”
leads to gel formation



Colloidal particles (colloids)

+ Colloidal particles: diameters ~ 10-8-10-° m. (> atoms, « scales of humans)

+ Range of interaction « diameter of particles (unlike atoms)
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Small clusters of colloids like to be asymmetric
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G. Meng, N. Arkus, M. P. Brenner, V. N. Manoharan, Science 327 (2010)



Large collections of colloids like to form crystals

Colloidal crystal

From Wikipedia, the free encyclopedia

A colloidal crystal is an ordered array of colloid particles, analogous to a standard crystal whose repeating subunits are atoms or
molecules.!"! A natural example of this phenomenon can be found in the gem opal, where spheres of silica assume a close-packed
locally periodic structure under moderate compression. 23] Bulk properties of a colloidal crystal depend on composition, particle size,

packing arrangement, and degree of regularity. Applications include photonics, materials processing, and the study of self-assembly
and phase transitions.
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Colloids —> Sticky particles

+ Model colloids as sticky: interacting with infinitesimally short-ranged pair
potential

* Allows geometry to be used in statistical mechanics U
+ Consider finite # N of particles (“cluster")

+ Characterize free energy landscape of clusters of sticky particles
—> via local minima

Free energy



What do local minima look like?

» Spheres are either touching, or not
» Energy of cluster of N spheres « -(# of contacts)
» Lowest-energy clusters = those with maximal number of contacts

» These are (typically) rigid: they cannot be continuously deformed without
breaking a contact (=crossing an energy barrier.)

¢ More generally: energetic local minima have a locally maximal number of
contacts, so are (typically) rigid.

2 rigid clusters for N=6



Energy landscape with very short-range interactions

Traditional energy landscape

Free Energy
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Outline

+ Rigidity — review: What is rigid? And how can we test it?

+ Sphere packings: What are all the ways to arrange N identical spheres
into a rigid cluster?

+ Statistical mechanics: What are the free energies / probabilities to find
each cluster, in equilibrium?



Rigidity — Review

What is a rigid cluster (rigid graph), and how can we test it?



What is rigid?
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» Each adjacency matrix corresponds to a system of quadratic equations and

inequalities (x; eR3):
CI?i—ZCjQZdZ lwazl

Zl?i—(,Uj2>d2 lwa:O

o A cluster (x,A) with x = (x1, x2, ..., xn) is rigid if it is an isolated solution to this
system of equations (modulo translations, rotations) (e.g. Asimow&Roth 1978)

< There is no finite, continuous deformation of the cluster that preserves all

edge lengths.




How to test for rigidity?

¢ Testing the full definition is co-NP hard  (Abbott, Master’s Thesis, 2008)

¢ We will introduce stronger notions of rigidity:
(based on Connelly & Whiteley, 1996)

+ First-order rigid (too strong/too easy)
+ Second-order rigid (too weak / too hard)

+ Prestress stability (just right)

|




First-order rigid

o Let p(t) be a continuous, analytic deformation of cluster with p(0) = x

¢ Take d/dtli=0 of
aed/ t=0 O ’ajz—aj]‘QZdQ

o Resultis ; ;

¢ Write system as

Il =10 (*1)

» R(x) is the rigidity matrix.

o p’ =p’(0) is the set of velocities we give to the nodes, to deform cluster
infinitesimally.

» A cluster is first-order rigid if there are no solutions p’ to (*1) except trivial solutions
(infinitesimal translations, rotations)

» A non-trivial solution p” to (*1) is a flex



¢ Theorem: (x,A) is first order rigid = (x,A) is rigid
(consequence of Implicit Function Theorem, if isostatic)

¢ Easy to test first order rigid

¢ But too restrictive!
first-order rigid (in R2)

floppy (in R3)

floppy (in R2,R3)

1st-order rigid

rigid (R?)
not first-order rigid (R?)

& Toys!!



Second-order rigid

o Take d?/d2li—o of ‘»73@ B ij‘Q — d?]

ot W AR AR AT e R
¢ Write as

Rizip> = -Ripiin, o Joss e i 0 ol el

¢ A cluster is second-order rigid if there are no solutions (p’,p”’) to (*2), except
where p’ is trivial.

¢ Theorem (Connelly & Whiteley 1996):
(x,A) is second-order rigid = (x,A) is rigid. second-order rigid

rigid

¢ Testing second-order rigidity is hard! Ist-order
No efficient method to do this. rigid




Prestress stability R(z)p” = —R(p')p’,

¢ (x,A) is prestress stable (PSS) if

dw e Null(RT(x)) s.t. WIR(p')p’>0 Vp 7, p'=0

V" = space of non-trivial flexes (solutions p’ to R(x)p’=0)

¢ (x,A)is PSS = (x,A) is second-order rigid = (x,A) is rigid

second-order rigid

prestress
1st-order rigid stable

(*pss)



What is Null(RT) physically?

¢ An element w € Null(R(x)) is a self-stress

¢ Physically a self-stress is a set of spring constants on edges to put them under
tension or compression, so there is not net force on the system

¢ If deform with a flex, “energy” of this spring system increases.

compression

tension

Connelly & Whiteley (1996)



Sphere packings

What are all the rigid clusters of N identical spheres?

H.-C. (2016) SIAM Review



Previous approaches

(1) List all adjacency matrices with 3N-6 contacts

(2) For each adjacency matrix, solve (analytically or with computer) for the
positions of the particles, or argue that no solution exists.

e N. Arkus, V. N. Manoharan, M. P. Brenner. Phys. Rev. Lett., 103 (2009)

e N. Arkus, V. N. Manoharan, M. P. Brenner. SIAM ]. Disc. Math., 25 (2011)
e R.S. Hoy, J. Harwayne-Gindansky, C. O’'Hern, Phys. Rev. E, 85 (2012)

e R.S. Hoy, Phys. Rev. E, 91 (2015)

Analytical: to N=10
Computer: to N=13 (though many were missed)

Problems:

» LOTS of adjacency matrices: ~ 2n(n-1)/2

» How to solve equations?
+ analytical — really hard
+ computer — can’t guarantee found solutions
+ Degree of equations is VERY high (= 23N-61)



H.-C. (2016) SIAM Review
A different algorithm

Move from cluster to cluster dynamically




Algorithm

+ Start with a single rigid cluster

+ Break all subsets of bonds that give a cluster with one internal degree of
freedom™.

+ For each subset, move on this internal degree of freedom until another bond is
formed.

+ If resulting cluster is rigid (pss), add to list.

+ Repeat for all clusters in list. Stop when reach end of list.

* Testing for one dof is hard.















Total number of clusters
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(why? is thispzewable] disprovable?)  e.g. Stillinger(+984,1995), Frenkel (2014), etc.



H.-C. (2016) SIAM Review
Total number of clusters computed

n number of contacts
3In—9 3In—8 3n-—-7 3n — 6 3In—5 3n—4 3In—3 3n-—2 Total
5 1 1
6 2 2
i 5 5
8 13 13
9 52 52
10 1 259 | 263
il 2 18 1618 b.. N 1659
12 L 148 11,638 [ 11,980
13 87 il 95,810 1307 " 98,529
14 1 707 10,537 872,992 10,280 878 2 P 895,478
S d - dn—38 'dn=-2  Jdn—1] 3n Sl S =2
57675 782 55 W O e s (9 x 10° est.)
16 7895 664 6. 8 T (1 x 108 est.)
il 7796 789 DRI (1.2 x 10 est.)
18 9629 OS5y e T S (1.6 x 1010 est.)
19 13,472 = 1458 = “™OGagu. 7% | (2.2 x 101 % esth

(N=20,21 also; data not shown)

hyperstatic



- BRBRERR E
R T

= WRBRBRE

- BB HFSH BB
T T 3% Y
« S Wrd P

- P RREP




Some scaling laws
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Why all these exponential scaling laws?
Do the exponents approach a common value as N—co0 ?
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can explain using geometry, combinatorics, random matrix theory, ...?



H.-C. (2016) SIAM Review
Total number of clusters computed

n number of contacts
In—9 3n—8 3In-—7 3n —6 3In—5 3n—4 3In—3 3n-—2 Total
5 1 1
6 2 2
7 5 5
8 13 13
9 52 52
10 | ¢ ™ 259 3 263
% @ 20 1 1659
12¢ i $1,638 174 8 1 11,980
13 % 87 1221  #5,810 1307 96 8 98,529
14 [N 707 #872,992 10,280 878 79 4 895,478
Mg 37t — 3 Qe 3n —1 3n 3n +1 3n + 2
1530 7675 YRS 6 (9 x 10° est.)
16 7895 664 62 8 (1 x 108 est.)
17 7796 789 85 6 (1.2 x 10? est.)
18 9629 1085 91 5 (1.6 x 1010 est.)
19 L3 AT S A58 95 7 (2.2 x 101! est.)

(N=20,21 also; data not shown)
hypostatic



A cluster “missing” one contact, N=10




clusters missing two contacts,
N=11

& 5
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cluster missing three
contacts, N=14




cluster missing arbitrarily many contacts

# of contacts ~ 2N when N large



Clusters with the same adjacency matrix




4 clusters with the same adjacency matrix (N=14)

# adj. matrices with multiple copies: N=11 (1), N=12 (23), N=13 (474), N=14 (6672)



with Bob Connelly,

A “Third-order rigid” cluster (algebraic multiplicity =3)  Jorathan Hauenstei =




Another higher-order rigid cluster




Does the algorithm find everything?

N=11
hypostatic
3N-7 contacts
hcp fragment

INIodE. e o here’s an example:

Cluster landscape looks like:
Question:

Is the landscape ever
connected (by 1 dof
motions), under additional
assumptions?

® e.g. clusters are regular,
Isostatic, have random
diameters, ....




A peek into why we can’t find it  (thanks to Louis Theran)

¢ Recipe for making a cluster the algorithm can’t find (L. Theran):
Make a cluster which is

+ hypostatic
+ has a stress supported on all edges
o Cut the stress —> cluster becomes regular, hence > 1 d.o.f.



Data contains lots of singular clusters

Singular cluster: rigid but not first-order rigid
This is a nonlinear notion of rigidity.

Smallest singular cluster: N=9

A non-rigid, N=9

;.‘-4

G. Meng, N. Arkus, M. P. Brenner, V. N.
Manoharan, Science 327 (2010)

Probability 11% in experiments! (out of 52 clusters total)



B

non-rigid, N=10

N=10:

singular 21%,

hyperstatic 12%

despite > 250 total clusters!

Is there a competition between
singular, hyperstatic clusters as
N increases?

—> not symmetry number that
matters, rather degree of
singularity / hyperstaticity?



Singular clusters

11 3%

12 2.9%
13 O 27%
14 . 25%

Close-packing fragments

10 7%

11 7.2%
12  36%
13 1.6%
14 0.63%

H.-C. (2016) SIAM Review



Statistical Mechanics

What is the probability of a cluster x in the sticky-sphere (short-ranged
interaction) limit?

M. H.-C., S. Gortler, M.P.Brenner, PNAS (2013)
Y. Kallus, M. H.-C., Phys. Rev. E (2017)



Probability(cluster x) « Partition function Zx

Ly = / e BV (=) gy
N ()

V(x) = energy of configuration x, B =1/ksT = inverse temperature
N(x) = neighbourhood of x, including translations, rotations, permutations,
and bonds with lengths  (d - ¢, d + ¢)

energy of a pair = U( | xixj|)

U(r) xj=center of ith sphere,

1
1
Sticky-sphere limit: : x=(X1,X2,...,XN)
1
1
1

¢ Range e «d
» Depth U(d) » 1

Vi) =) Ullzs — z;))

i3]

M. H.-C., S. Gortler, M.P. Brenner, PNAS (2013)
Y. Kallus, M. H.-C., Phys. Rev. E (2017)



“Geometry” of the calculation

B = # of bonds
Asymptotically as e —> 0:

Ve e / dx

{—eﬁyk(i’?)SG}szl

constraints ~ fattened” by €

e )= ]:E% L jk‘ — 1 = excess bond distance between spheres i, jk

{z :yr(x) =0} ishypersurface where sphere ix touches sphere ji

Zx = Exp(# of contacts) * Volume(constraint intersection region)

— 00 — ()

“energy” “entropy”



Example (regular)

xeR?2
yi(x) =vix=0
ya(x) = vox =0

Want volume of region

M = { -e <yi(x), ya(x) < e}

VolM) = 41 vi X v, |42

“Regular” constraints should have volumes that scale as

8dimension of intersection set



Example (singular)

X eR?

y1(x) = x2
Y2(X) = (x1)? - x2

Change variables:
Yi=yi1/¢ oY

= 26_3/2\/Y1 =5 Y2




Vol(Example 2) 1
_ _ ~ — — 0
Vol(Example 1)  €l/2 G

—> Free energy of singular clusters should dominate that of regular
clusters (with the same number of contacts), in the sticky-sphere limit.

Physically, they have more entropy.



Example (hyperstatic)

xeR?

Y1(X) = V1°X

yQ(X) — VDS

y3(X) = vax

Vol « g2




Zx = EXp(# of contacts) * Volume(constraint intersection region)

/.. (hyperstatic example
»(hyp ple) U

U(d —
Z.(regular example) — oo as U(d) = —oo

—> Free energy of hyperstatic clusters should dominate that of
regular clusters, in the sticky-sphere limit.

Physically, they have lower energy.

Who wins: singular clusters or hyperstatic clusters, as N —co ?



General case

How does the free energy of singular clusters scale with &?

Algebraic geometry:
Volweq(loge)k, geQ, keZ

qk related to the algebraic nature of the singularity, i.e. what it looks like
once it is “resolved”

IGUSA INTEGRALS AND VOLUME ASYMPTOTICS
IN ANALYTIC AND ADELIC GEOMETRY

ANTOINE CHAMBERT-LOIR
Université de Rennes 1 and Institut universitaire de France,
IRMAR-UMR 6625 du CNRS, Campus de Beaulieu,
35042 Rennes Cedex, France
antoine.chambert-loirQuniv-rennesl.fr

YURI TSCHINKEL

Courant Institute, NYU, 251 Mercer St.
New York, NY 10012, USA
tschinkel@cims.nyu.edu

Received 24 December 2009
Revised 11 October 2010

We establish asymptotic formulas for volumes of height balls in analytic varieties over
local fields and in adelic points of algebraic varieties over number fields, relating the
Mellin transforms of height functions to Igusa integrals and to global geometric invariants
of the underlying variety. In the adelic setting, this involves the construction of general
Tamagawa measures.

Keywords: Heights; Poisson formula; Manin’s conjecture; Tamagawa measure.

AMS Subject Classification: 11G50 (11G35, 14G05)



Our approach

Ly = / o VE
N (z)

» Taylor-expand the potential V(x) = Z iy = a4
17]
» EBvaluate integral using Laplace asymptotics

¢ Asymptotically the same scaling as square-well potential:
log(Zsquare) ~ l0g(Zx) as e—=0, U(d)—>c0 (Kallus & H.-C., Phys Rev E (2017))



M. H.-C., S. Gortler, M.P.Brenner, PNAS (2013)

iti ; e Y. Kallus, M. H.-C., Phys. Rev. E (2017
Partition function for second-order rigid cluster e g v UL

# of bonﬂs beyond # of singular directions
3N-6

AB d
i — e
Exp(depth) width-1/2

where the geometrical part is

zr = (const) - = H N / e Q) dx

\; 20 X
parameters are geometry-dependent variables are
s —BU(d) AB = # of bonds beyond isostatic (=B-(3N-6))
e Mo dx = # of singular directions
6 — (U /s (d) 6 d ) / I(x) = determinant of moment of inertia tensor

o = symmetry number
Ai(x) = eigenvalues of VVV = R(x)RT(x)

Only TWO parameters needed! Q(x) = quartic function on space X of singular

directions



N=14

yperstatic,
singular

’ most hypostatic,
most singular

K=10

log o - k=103
ostaltic, =
(Width-1/2) gﬁ’\gular

singular maximum bonds

regular

log v
(depth)
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Conclusions / Outlook

» Hyperstatic > Singular (empirically®, for identical spheres) *(no floppy)
+ Why? 3 underlying geometric, or statistical, reason?
+ High temperature —> disorder. Critical temperature predicted by geometry.

+ Do other systems favour singular, or hypostatic structures (e.g. non-identical
spheres, ellipses, ....?)

¢ Computational challenges still remain
+ Efficiently determining rigidity, in the presence of “noise” (numerical error)

+ Efficiently determining “floppiness”: degrees of freedom, and “true” tangent
space

* Algorithm gives us (leading-order) Transition Rates!

+ Predictions agree with our experiments
(R. W. Perry, M. H.-C., M. P. Brenner, V. N. Manoharan, PRL (2015))



