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Flat projective space

P2: take a flat disc and identify opposite boundary points.
A compact metric space with geodesic distance:

(i) Euclidean distance, db(p, q) = ‖p − q‖2.

(ii) Re-entrant distance, dr (p, q) = inf |x |=1{‖p− x‖2 + ‖q+ x‖2}.

(iii) Geodesic distance, dg (p, q) = min{db(p, q), dr (p, q)}.

Whence, bar-joint frameworks with two types of bars, for
db(·, ·), dr (·, ·).

The underlying structure graph is 2-coloured: E = Eb ∪ Er .



A combinatorial characterisation, à la Laman

Thm. Let (G , p) be a completely regular double-distance
framework in P2 with 2-coloured graph G . The f.a.e.

i) (G , p) is minimally rigid.
ii) G is (2, 1)-tight and ”limited” (see later).
iii) G has a construction sequence (see later).

Note: P2 only ”has one isometry”, rotational, so the (Maxwell)
constraints/freedoms count is |E | = 2|V | − 1.



Some other double-constraint contexts

The additional constraint d2(·, ·) need not be a metric.

• For R2 : Distance + direction

• For Rd : Euclidean + non-Euclidean distances

• On a surface: geodesic distance + direct distance

Essentially smooth double distance context:

(X ,X0, d1, d2) with (X , d1) a metric space, X0 a dense smooth
manifold, and d1, d2 differentiable on X0 × X0.



Applied contexts

a) Protein mapping: Residual dipolar coupling (RDC) between
rigid units viewed as an additional constraint.

b) 3D sensor networks: Euclidean distances plus altitudes or
relative altitudes:

”Toy model”: the ”separable” double-distance context

(R3
, dxy , dz)

with dxy (·, ·) and dz(·, ·) projected distances in the xy -plane and
the z-axis.



(2, 3), (2, 2) and (2, 1)-tight graphs

1970 Laman/Henneberg
(2, 3)-tight G : from K2 by Henneberg moves.

1991 Tay
(2, 2)-tight G: from K1 by ”Henneberg moves”.

2014 Nixon-Owen-P
(2, 2)-tight simple G: from K1 by Henneberg moves, vertex-to-K4

and vertex-to-4-cycle moves.

(2, 1)-tight simple G : from K5\e by Henneberg, vertex-to-K4,
vertex-to-4-cycle, and edge-joining moves.
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Proof of the P2 theorem

A (2, 1)-tight 2-coloured multi-graph is limited if

i) any red subgraph is simple (possibly with looped edges), and
ii) any blue subgraph is (2, 3)-sparse.

Thm. A limited (2, 1)-tight multigraph is constructible from a
base graph, Ab,Ar or a loop, by coloured Henneberg moves and
edge joining moves.

Thm. These moves preserve rigidity and Ab,Ar , loop are rigid.

0-extensions: OK
1-extensions: Special position arguments for 6 colour cases.



Other directions

Thm. Let (G , p) be a completely regular double-distance
framework for (R2

, ‖ · ‖2, ‖ · ‖q), q 6= 1, 2,∞. The f.a.e.

i) (G , p) is minimally rigid.
ii) G is (2, 2)-tight and ”limited”.
iii) G is constructible from K1 by coloured Henneberg moves !

Further Theory

A) mixed sparsity matroids ?

B) ”Protein inspired frameworks” :
body-hinge-pin-bond plus angular constraints.
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