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What do gossip, guitar hero and chemical reactions have in common?

CH,+ 20,"2(0y2H,Q

G 2 2
AUTALEY :o\,k%,%“&

H Harrington (Oxford) Computational topology and algebra for biology 12 January 2017 2/30



What do gossip, guitar hero and chemical reactions have in common?
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Can mathematics help us find out?
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@ How do processes (eg gossip, epidemics) spread?
@ How do we learn (to play guitar hero)?

© How do cells make decisions (via chemical reactions)?

Brockman and Helbing (2013) Science

To study these problems requires models and data.
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Data Models
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Data Models
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Data Models

facebook
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Data Models

y=m-x+5b
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Data Models

y=m-x+b

Emma is going punting. The cost to
initially hire a punt is £10. The hourly
charge is £5/hour. If Emma hired a punt
for 4 hours, how much did she pay?

H Harrington (Oxford) Computational topology and algebra for biology



Data Models

y=m-x+b

Emma is going punting. The cost to
initially hire a punt is £10. The hourly
charge is £5/hour. If Emma hired a punt
for 4 hours, how much did she pay?

y=5-x+10
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Data Models

y=m-x+b

Emma is going punting. The cost to
initially hire a punt is £10. The hourly
charge is £5/hour. If Emma hired a punt
for 4 hours, how much did she pay?

y=5-x+10
y=5-4410
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Spreading processes

Social contagion Epidemic contagion
@ Information diffusion o Epidemiology for networks
(innovations, memes, marketing) (social networks, technology)
o Belief and opinion @ Preventing epidemics
(voting, political views, civil unrest) (immunization, malware)
@ Behavior and health [ e e |

July 1350 - Dec 1350
> Dec 1350

Black death. Marvel et al (2014) arxiv 1310.2636
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Complex contagion

Adoption of a contagion requires multiple contacts with the contagion

Timestep 0
Node | 2 3 4 5
Activation
time t 0
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Complex contagion

Adoption of a contagion requires multiple contacts with the contagion

Timestep |
Node | 2 3 4 5
Activation
time t 0 I
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Complex contagion

Adoption of a contagion requires multiple contacts with the contagion

Timestep 2
Node | 2 3 4 5
Activation
time t 0 2 ! 2
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Complex contagion

Adoption of a contagion requires multiple contacts with the contagion

Timestep 3
Node | 2 3 4 5
Activation
time t 0 2 I 2 3
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Balcan et al (2009) PNAS
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We consider two types of connections:

Geometric connections

+

Non-geometric connections
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Balcan et al (2009) PNAS
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Topology is concerned with the global properties of space
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H is for homology

One can stretch or bend a shape, but not tear or glue it.

Homology allows one to distinguish shapes (even stretching or bending).
Home » About Us » Life in Oxford ics » Oxford N ics Alphabet

H is for Homology

A life belt, a coffee cup, a jumping ball, a beach ball - what do these objects have in
common? What sets them apart? It is questions like these that are considered in the
mathematical field called ropology. A method to study these questions is given by the
theory of homology.
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Bernadette Stolz and
Barbara Mahler are
DPhil students in the
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Topology is concerned with the global properties of space
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Topology is concerned with the global properties of space
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How to compute topology from a sample of the space?

15} Hy >
° —
° —
T oe =
o =
05 =
° 0 0.5 1.0 15 2.0
° °
of ° ° H,
°
05
°
1 L L L =
1 05 0 05 1 15 2
0 0.5 1.0 1.5 2.0

H Harrington (Oxford)

Computational topology and algebra for biology



How to compute topology from a sample of the space?
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How to compute topology from a sample of the space?
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How to compute topology from a sample of the space?
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How to compute topology from a sample of the space?
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How to compute topology from a sample of the space?
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contagion

extremely fast no global
slow cascade
cascade cascade

activation time
— 25 50 75
M .

T increasing @ seed node

@ never activated
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activation
times

activation time

25 50 75
O Tl

@ seed node

@ never activated

H Harrington (Oxford) Computational topology and algebra for biology



How do we learn?

@ 100 billion neurons in the brain

@ Create a functional network
fMRI Imaging

Functional Parcellation

Second Sequence.

N Scps
[b)

00000000000 ” quir,  cwan o,
Craaseas e

) s s s e e e : . Brain regions
Y YT Y: . . Functional Network Functional Connectivity
o Chunkl,  Chnk2,  Chuks,

Bassett et al. (2011) PNAS.
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British mathematician: Sir Christopher Zeeman

Two-page paper available on LMS website.
In search bar: "topological theory of the brain”
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British mathematicians: Muldoon, MacKay, Huke, Broomhead

Physica D 65 (1993) 1-16 II
North-Holland
—_—

SDI: 0167-2789(92)00026-1

Topology from time series

M.R. Muldoon®, R.S. MacKay*, J.P. Huke® and D.S. Broomhead®

*Nonlinear Systems Laboratory, Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
"DRA at RSRE, Malvern, St. Andrew’s Road, Great Malvern, Worcestershire WR14 3PS, United Kingdom

Received 15 August 1992

Revised manuscript received 13 November 1992
Accepted 23 November 1992

Communicated by G. Ahlers

We describe methods for the study of topological properties of the invariant manifolds of experimental dynamical
systems. We explain how to compute such invariants as the Euler characteristic and Betti numbers using time series data,
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Topology for neuronal networks

s d e Topological Tools

. |C0upled Time Series |—> | Functional Networkl RERSRERERN
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Topology for neuronal networks

A Topological Tools

|Coupled Time Series |—> | Functional Networkl V—>

PV
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Bassett et al. (2011) PNAS. B Stolz, HAH, MA Porter. arXiv:1605.00562
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POINT CLOUD Topological data analysis of Brexit (UK)

g éw ¥ Brexit Vote (June 2016)
P 1t Voting to Le EU
g {/W I 7006 o e oo oo Vietoris-Rips Filtration on "leave" districts (dimension 0)
> .

Noftherilielahd
Sl
15 gffan

2 J I Under 30.00% in Favor of Leaving.
ey

Vietoris-Rips Filtration on “leave" districts (dimension 1)

Newport, Bristol, Cardiff

The Cotswolds, O; ire, Reading
———(Manchester)
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Maptitude

s MappingSoftware com
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NETWORK Topological data analysis

EU “pre-Brexit" weight rank clique filtration (dimension 0)

Founding countries
First enlargement
Spain & Portygal
Fourth enlargement
2004

Enlargement
Romania & Bulgaria
Croatia
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EU "pre-Brexit" weight rank cliue filtration (dimension 1)
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of Brexit (EV)

EU “post-Brexit" weight rank clique filtration (dimension 0)

United Kingdom

Ireland

Union

2000 2055 2030 2005 2040 2045 2050 205 2060 2065 2070 2075

EU “post-Brexit" weight rank clique filtration (dimension 1)
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How do cells make decisions?
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How do cells make decisions?

David Goodsell
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David Goodsell
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Linear equations

2x-6=0

0 T xaxis
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Linear equations

1 t } t \
0 x axis
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Linear equations

(2,3)

N

y axis
T 2x-6=0
or
T x=3
+ + +
0

H Harrington (O

X axis
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Linear equations

Suppose we are given 2 equations:
x+y—z=0and 2x+ 3y +2z=0.
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Linear equations

Suppose we are given 2 equations:
x+y—z=0and 2x+ 3y +2z=0.
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Linear equations

Suppose we are given 2 equations: X+y—2ZP2x+3y + 22
x+y—z=0and 2x+ 3y +2z=0. 2x 42y — 2z

y+4z

Now we can write
y+4z=0 = y=—-4z
and substitute,

x+y—z=0

x—4z—-z=0

= x =5z
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Nonlinear equations

ax®>+bx+c=0
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Nonlinear equations

ax>’+bx+c=0
00
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Nonlinear equations
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ax>’+bx+c=0
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Nonlinear equations
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Nonlinear equations
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Nonlinear equations

Chemical reaction system

x+y 25 2x
3XL>y+2z

d
z—x,z—"y
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Nonlinear equations

Chemical reaction system

X4y — 2x
3XL)}/+22

d
z—sx,z"5y

axy —3bx3 +cz=0, —axy+bx*+dz=0, 2bx>—cz—dz=0
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Mathematical models

3 LINEAR NON-LINEAR
k)

Eg_ EX1: EX3:
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David Goodsell
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Models

k1
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Computational algebra and topology is useful for biology!

Z
o
DNA helix

Molecules «<— Organelles «<— Cells «<— Tissues <— Organs <— Organism
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