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What do gossip, guitar hero and chemical reactions have in common?
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What do gossip, guitar hero and chemical reactions have in common?

Can mathematics help us find out?
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1 How do processes (eg gossip, epidemics) spread?

2 How do we learn (to play guitar hero)?

3 How do cells make decisions (via chemical reactions)?

Brockman and Helbing (2013) Science

To study these problems requires models and data.
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Data Models

y = m · x + b

Emma is going punting. The cost to
initially hire a punt is £10. The hourly
charge is £5/hour. If Emma hired a punt
for 4 hours, how much did she pay?

y = 5 · x + 10

y = 5 · 4 + 10
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Spreading processes

Social contagion

Information diffusion
(innovations, memes, marketing)

Belief and opinion
(voting, political views, civil unrest)

Behavior and health

Epidemic contagion

Epidemiology for networks
(social networks, technology)

Preventing epidemics
(immunization, malware)

Motivation

• Epidemics historically described by wave front propagation

Black death
-Marvel et al (2014) arXiv 1310.2636

Epidemics: Then and Now

Black death. Marvel et al (2014) arxiv 1310.2636
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Complex contagion
Adoption of a contagion requires multiple contacts with the contagion

An example with T=0.3

1

2

3 6

5

4

Timestep 0

Node 1 2 3 4 5 6

Activation 
time t 0

Contagion dynamics for topological data analysis
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Complex contagion
Adoption of a contagion requires multiple contacts with the contagion

An example with T=0.3

1

2

3 6

5

4

Timestep 1

Node 1 2 3 4 5 6

Activation 
time t 0 1

Contagion dynamics for topological data analysis
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Complex contagion
Adoption of a contagion requires multiple contacts with the contagion

An example with T=0.3

1

2

3 6

5

4

Timestep 2

Node 1 2 3 4 5 6

Activation 
time t 0 2 1 2

Contagion dynamics for topological data analysis
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Complex contagion
Adoption of a contagion requires multiple contacts with the contagion

An example with T=0.3

1

2

3 6

5

4

Timestep 3

Node 1 2 3 4 5 6

Activation 
time t 0 2 1 2 3 3

Contagion dynamics for topological data analysis
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(7–10, 24–26). In this paper, we use the GLEaM computational
scheme based on a georeferenced metapopulation approach. The
model consists of three data layers. The population and mobility
layers allows the partition of the world into geographical census
regions coupled by population movements. This partition defines
the subpopulation network where the connections between sub-
populations represent the fluxes of individuals due to the
transportation infrastructures and mobility patterns. Superim-
posed on this subpopulation network is the epidemic layer that
defines inside each subpopulation the disease dynamics that
depends on the specific etiology of the disease considered (see
Material and Methods).

Multiscale Mobility Networks. The basic structure of GLEaM is
based on high-resolution population data† that estimates the pop-
ulation with a resolution given by cells of 15 ! 15 minutes of arc,
covering the whole planet. This population data allows the con-
struction of Voronoi tassels around transportation hubs in the
world, defining the subpopulations structure of the metapopulation
model (see SI Appendix). In particular, we identify 3,362 subpopu-
lations centered around IATA airports in 220 different countries.
The air-traffic network among the defined subpopulations is ob-
tained from the IATA databases that contain the list of worldwide
airport pairs connected by direct flights and the number of available
seats on any given connection. The high level of geographical
resolution of the subpopulation database enables us to integrate
also the mobility flows due to commuting patterns between sub-
populations (see Material and Methods) and construct the corre-
sponding commuting network. The main difficulty in defining a
commuting network worldwide is the lack of a global database as
opposed to the case of the air-traffic flow. Data are scattered in
different national and international databases that use different
administrative and geographical granularities, and several defini-
tions of commuting flows. We have collected commuting data from

29 countries (a full list of countries and the database properties are
reported in the SI Appendix) in five different continents. Each
dataset was mapped into the GLEaM Voronoi tessellation con-
structing the commuting networks at the subpopulation level.

In Fig. 1, we show the commuting network of the continental U.S.
as obtained by mapping the county commuting data onto the
subpopulations used by GLEaM. Commuting data do not consider
airline flows that are accounted for by the IATA dataset. On the
same scale, we also report the airline traffic network, readily
highlighting the difference in scale and spatial structure of the two
networks. The commuting network appears as an almost grid-like
lattice connecting neighboring subpopulations, whereas the airline
traffic network is dominated by long range connections. The wide
range of scales is evident also in the intensities of the mobility flows,
spanning several orders of magnitude, with the average commuting
flow being one order of magnitude larger than the average airline
traffic flow. Finally, it should be noted that, in general, commuting
flows refer to round trip processes with a characteristic time of the
order of 1/3 day (average duration of a work day) compared with
much longer characteristic times for airline travel (average value
around two weeks at the end.‡

To gain general insight on the commuting flow, we use the
general gravity model from transportation theory (22, 23) as a
starting point. This model assumes that the commuting flow wij
between subpopulation i (with population Ni) and subpopulation j
(with population Nj) takes on the form:

wij ! C
Ni

"Nj
#

f"dij#
, [1]

where C is a proportionality constant, " and # tune the depen-
dence with respect to each subpopulation size, and f(dij) is a
distance-dependent functional form. Gravity laws usually con-
sider power or exponential laws for the behavior of f(dij). The
results reported in the literature are variable and generally
depend on the way the subpopulations are defined. In our case,

†The Gridded Population of the World and The Global Rural-Urban Mapping Projects,
Socioeconomic Data and Applications Center of Columbia University, http://sedac.ciesin.
columbia.edu/gpw. ‡Travel Trends 2007, Office for National Statistics, www.statistics.gov.uk.
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Fig. 1. Multiscale mobility networks and gravity law fit. (A) Continental U.S. airline transportation network. (B) Continental U.S. commuting network. The width and
color (from blue to red) of the edges represent on a logarithmic scale the intensity of the mobility flow. (C) Commuting flux obtained from data (w(D)) rescaled by the
gravity law’s dependence on origin and destination populations (Ni

"Nj
#), as a function of the distance between subpopulations. The number of people commuting

between different urban areas decreases exponentially with distance up to 300 kms. (D–F) Ratio of commuting flux obtained from data (w(D)) to corresponding
commutingfluxpredictedbythegravitymodelwithfittedparameters (w(M)), asa functionofdistance,populationoforiginandpopulationofdestination, respectively.
The three plots provide values spread $1, showing that the synthetic networks generated by the functional form (see Table 1) reproduce well the commuting fluxes
obtained from data. Solid lines in all frames are guides to the eye.
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(7–10, 24–26). In this paper, we use the GLEaM computational
scheme based on a georeferenced metapopulation approach. The
model consists of three data layers. The population and mobility
layers allows the partition of the world into geographical census
regions coupled by population movements. This partition defines
the subpopulation network where the connections between sub-
populations represent the fluxes of individuals due to the
transportation infrastructures and mobility patterns. Superim-
posed on this subpopulation network is the epidemic layer that
defines inside each subpopulation the disease dynamics that
depends on the specific etiology of the disease considered (see
Material and Methods).

Multiscale Mobility Networks. The basic structure of GLEaM is
based on high-resolution population data† that estimates the pop-
ulation with a resolution given by cells of 15 ! 15 minutes of arc,
covering the whole planet. This population data allows the con-
struction of Voronoi tassels around transportation hubs in the
world, defining the subpopulations structure of the metapopulation
model (see SI Appendix). In particular, we identify 3,362 subpopu-
lations centered around IATA airports in 220 different countries.
The air-traffic network among the defined subpopulations is ob-
tained from the IATA databases that contain the list of worldwide
airport pairs connected by direct flights and the number of available
seats on any given connection. The high level of geographical
resolution of the subpopulation database enables us to integrate
also the mobility flows due to commuting patterns between sub-
populations (see Material and Methods) and construct the corre-
sponding commuting network. The main difficulty in defining a
commuting network worldwide is the lack of a global database as
opposed to the case of the air-traffic flow. Data are scattered in
different national and international databases that use different
administrative and geographical granularities, and several defini-
tions of commuting flows. We have collected commuting data from

29 countries (a full list of countries and the database properties are
reported in the SI Appendix) in five different continents. Each
dataset was mapped into the GLEaM Voronoi tessellation con-
structing the commuting networks at the subpopulation level.

In Fig. 1, we show the commuting network of the continental U.S.
as obtained by mapping the county commuting data onto the
subpopulations used by GLEaM. Commuting data do not consider
airline flows that are accounted for by the IATA dataset. On the
same scale, we also report the airline traffic network, readily
highlighting the difference in scale and spatial structure of the two
networks. The commuting network appears as an almost grid-like
lattice connecting neighboring subpopulations, whereas the airline
traffic network is dominated by long range connections. The wide
range of scales is evident also in the intensities of the mobility flows,
spanning several orders of magnitude, with the average commuting
flow being one order of magnitude larger than the average airline
traffic flow. Finally, it should be noted that, in general, commuting
flows refer to round trip processes with a characteristic time of the
order of 1/3 day (average duration of a work day) compared with
much longer characteristic times for airline travel (average value
around two weeks at the end.‡

To gain general insight on the commuting flow, we use the
general gravity model from transportation theory (22, 23) as a
starting point. This model assumes that the commuting flow wij
between subpopulation i (with population Ni) and subpopulation j
(with population Nj) takes on the form:

wij ! C
Ni

"Nj
#

f"dij#
, [1]

where C is a proportionality constant, " and # tune the depen-
dence with respect to each subpopulation size, and f(dij) is a
distance-dependent functional form. Gravity laws usually con-
sider power or exponential laws for the behavior of f(dij). The
results reported in the literature are variable and generally
depend on the way the subpopulations are defined. In our case,

†The Gridded Population of the World and The Global Rural-Urban Mapping Projects,
Socioeconomic Data and Applications Center of Columbia University, http://sedac.ciesin.
columbia.edu/gpw. ‡Travel Trends 2007, Office for National Statistics, www.statistics.gov.uk.
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Fig. 1. Multiscale mobility networks and gravity law fit. (A) Continental U.S. airline transportation network. (B) Continental U.S. commuting network. The width and
color (from blue to red) of the edges represent on a logarithmic scale the intensity of the mobility flow. (C) Commuting flux obtained from data (w(D)) rescaled by the
gravity law’s dependence on origin and destination populations (Ni

"Nj
#), as a function of the distance between subpopulations. The number of people commuting

between different urban areas decreases exponentially with distance up to 300 kms. (D–F) Ratio of commuting flux obtained from data (w(D)) to corresponding
commutingfluxpredictedbythegravitymodelwithfittedparameters (w(M)), asa functionofdistance,populationoforiginandpopulationofdestination, respectively.
The three plots provide values spread $1, showing that the synthetic networks generated by the functional form (see Table 1) reproduce well the commuting fluxes
obtained from data. Solid lines in all frames are guides to the eye.
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(7–10, 24–26). In this paper, we use the GLEaM computational
scheme based on a georeferenced metapopulation approach. The
model consists of three data layers. The population and mobility
layers allows the partition of the world into geographical census
regions coupled by population movements. This partition defines
the subpopulation network where the connections between sub-
populations represent the fluxes of individuals due to the
transportation infrastructures and mobility patterns. Superim-
posed on this subpopulation network is the epidemic layer that
defines inside each subpopulation the disease dynamics that
depends on the specific etiology of the disease considered (see
Material and Methods).

Multiscale Mobility Networks. The basic structure of GLEaM is
based on high-resolution population data† that estimates the pop-
ulation with a resolution given by cells of 15 ! 15 minutes of arc,
covering the whole planet. This population data allows the con-
struction of Voronoi tassels around transportation hubs in the
world, defining the subpopulations structure of the metapopulation
model (see SI Appendix). In particular, we identify 3,362 subpopu-
lations centered around IATA airports in 220 different countries.
The air-traffic network among the defined subpopulations is ob-
tained from the IATA databases that contain the list of worldwide
airport pairs connected by direct flights and the number of available
seats on any given connection. The high level of geographical
resolution of the subpopulation database enables us to integrate
also the mobility flows due to commuting patterns between sub-
populations (see Material and Methods) and construct the corre-
sponding commuting network. The main difficulty in defining a
commuting network worldwide is the lack of a global database as
opposed to the case of the air-traffic flow. Data are scattered in
different national and international databases that use different
administrative and geographical granularities, and several defini-
tions of commuting flows. We have collected commuting data from

29 countries (a full list of countries and the database properties are
reported in the SI Appendix) in five different continents. Each
dataset was mapped into the GLEaM Voronoi tessellation con-
structing the commuting networks at the subpopulation level.

In Fig. 1, we show the commuting network of the continental U.S.
as obtained by mapping the county commuting data onto the
subpopulations used by GLEaM. Commuting data do not consider
airline flows that are accounted for by the IATA dataset. On the
same scale, we also report the airline traffic network, readily
highlighting the difference in scale and spatial structure of the two
networks. The commuting network appears as an almost grid-like
lattice connecting neighboring subpopulations, whereas the airline
traffic network is dominated by long range connections. The wide
range of scales is evident also in the intensities of the mobility flows,
spanning several orders of magnitude, with the average commuting
flow being one order of magnitude larger than the average airline
traffic flow. Finally, it should be noted that, in general, commuting
flows refer to round trip processes with a characteristic time of the
order of 1/3 day (average duration of a work day) compared with
much longer characteristic times for airline travel (average value
around two weeks at the end.‡

To gain general insight on the commuting flow, we use the
general gravity model from transportation theory (22, 23) as a
starting point. This model assumes that the commuting flow wij
between subpopulation i (with population Ni) and subpopulation j
(with population Nj) takes on the form:

wij ! C
Ni

"Nj
#

f"dij#
, [1]

where C is a proportionality constant, " and # tune the depen-
dence with respect to each subpopulation size, and f(dij) is a
distance-dependent functional form. Gravity laws usually con-
sider power or exponential laws for the behavior of f(dij). The
results reported in the literature are variable and generally
depend on the way the subpopulations are defined. In our case,

†The Gridded Population of the World and The Global Rural-Urban Mapping Projects,
Socioeconomic Data and Applications Center of Columbia University, http://sedac.ciesin.
columbia.edu/gpw. ‡Travel Trends 2007, Office for National Statistics, www.statistics.gov.uk.
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Fig. 1. Multiscale mobility networks and gravity law fit. (A) Continental U.S. airline transportation network. (B) Continental U.S. commuting network. The width and
color (from blue to red) of the edges represent on a logarithmic scale the intensity of the mobility flow. (C) Commuting flux obtained from data (w(D)) rescaled by the
gravity law’s dependence on origin and destination populations (Ni

"Nj
#), as a function of the distance between subpopulations. The number of people commuting

between different urban areas decreases exponentially with distance up to 300 kms. (D–F) Ratio of commuting flux obtained from data (w(D)) to corresponding
commutingfluxpredictedbythegravitymodelwithfittedparameters (w(M)), asa functionofdistance,populationoforiginandpopulationofdestination, respectively.
The three plots provide values spread $1, showing that the synthetic networks generated by the functional form (see Table 1) reproduce well the commuting fluxes
obtained from data. Solid lines in all frames are guides to the eye.
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(7–10, 24–26). In this paper, we use the GLEaM computational
scheme based on a georeferenced metapopulation approach. The
model consists of three data layers. The population and mobility
layers allows the partition of the world into geographical census
regions coupled by population movements. This partition defines
the subpopulation network where the connections between sub-
populations represent the fluxes of individuals due to the
transportation infrastructures and mobility patterns. Superim-
posed on this subpopulation network is the epidemic layer that
defines inside each subpopulation the disease dynamics that
depends on the specific etiology of the disease considered (see
Material and Methods).

Multiscale Mobility Networks. The basic structure of GLEaM is
based on high-resolution population data† that estimates the pop-
ulation with a resolution given by cells of 15 ! 15 minutes of arc,
covering the whole planet. This population data allows the con-
struction of Voronoi tassels around transportation hubs in the
world, defining the subpopulations structure of the metapopulation
model (see SI Appendix). In particular, we identify 3,362 subpopu-
lations centered around IATA airports in 220 different countries.
The air-traffic network among the defined subpopulations is ob-
tained from the IATA databases that contain the list of worldwide
airport pairs connected by direct flights and the number of available
seats on any given connection. The high level of geographical
resolution of the subpopulation database enables us to integrate
also the mobility flows due to commuting patterns between sub-
populations (see Material and Methods) and construct the corre-
sponding commuting network. The main difficulty in defining a
commuting network worldwide is the lack of a global database as
opposed to the case of the air-traffic flow. Data are scattered in
different national and international databases that use different
administrative and geographical granularities, and several defini-
tions of commuting flows. We have collected commuting data from

29 countries (a full list of countries and the database properties are
reported in the SI Appendix) in five different continents. Each
dataset was mapped into the GLEaM Voronoi tessellation con-
structing the commuting networks at the subpopulation level.

In Fig. 1, we show the commuting network of the continental U.S.
as obtained by mapping the county commuting data onto the
subpopulations used by GLEaM. Commuting data do not consider
airline flows that are accounted for by the IATA dataset. On the
same scale, we also report the airline traffic network, readily
highlighting the difference in scale and spatial structure of the two
networks. The commuting network appears as an almost grid-like
lattice connecting neighboring subpopulations, whereas the airline
traffic network is dominated by long range connections. The wide
range of scales is evident also in the intensities of the mobility flows,
spanning several orders of magnitude, with the average commuting
flow being one order of magnitude larger than the average airline
traffic flow. Finally, it should be noted that, in general, commuting
flows refer to round trip processes with a characteristic time of the
order of 1/3 day (average duration of a work day) compared with
much longer characteristic times for airline travel (average value
around two weeks at the end.‡

To gain general insight on the commuting flow, we use the
general gravity model from transportation theory (22, 23) as a
starting point. This model assumes that the commuting flow wij
between subpopulation i (with population Ni) and subpopulation j
(with population Nj) takes on the form:

wij ! C
Ni

"Nj
#

f"dij#
, [1]

where C is a proportionality constant, " and # tune the depen-
dence with respect to each subpopulation size, and f(dij) is a
distance-dependent functional form. Gravity laws usually con-
sider power or exponential laws for the behavior of f(dij). The
results reported in the literature are variable and generally
depend on the way the subpopulations are defined. In our case,

†The Gridded Population of the World and The Global Rural-Urban Mapping Projects,
Socioeconomic Data and Applications Center of Columbia University, http://sedac.ciesin.
columbia.edu/gpw. ‡Travel Trends 2007, Office for National Statistics, www.statistics.gov.uk.
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Fig. 1. Multiscale mobility networks and gravity law fit. (A) Continental U.S. airline transportation network. (B) Continental U.S. commuting network. The width and
color (from blue to red) of the edges represent on a logarithmic scale the intensity of the mobility flow. (C) Commuting flux obtained from data (w(D)) rescaled by the
gravity law’s dependence on origin and destination populations (Ni

"Nj
#), as a function of the distance between subpopulations. The number of people commuting

between different urban areas decreases exponentially with distance up to 300 kms. (D–F) Ratio of commuting flux obtained from data (w(D)) to corresponding
commutingfluxpredictedbythegravitymodelwithfittedparameters (w(M)), asa functionofdistance,populationoforiginandpopulationofdestination, respectively.
The three plots provide values spread $1, showing that the synthetic networks generated by the functional form (see Table 1) reproduce well the commuting fluxes
obtained from data. Solid lines in all frames are guides to the eye.
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(7–10, 24–26). In this paper, we use the GLEaM computational
scheme based on a georeferenced metapopulation approach. The
model consists of three data layers. The population and mobility
layers allows the partition of the world into geographical census
regions coupled by population movements. This partition defines
the subpopulation network where the connections between sub-
populations represent the fluxes of individuals due to the
transportation infrastructures and mobility patterns. Superim-
posed on this subpopulation network is the epidemic layer that
defines inside each subpopulation the disease dynamics that
depends on the specific etiology of the disease considered (see
Material and Methods).

Multiscale Mobility Networks. The basic structure of GLEaM is
based on high-resolution population data† that estimates the pop-
ulation with a resolution given by cells of 15 ! 15 minutes of arc,
covering the whole planet. This population data allows the con-
struction of Voronoi tassels around transportation hubs in the
world, defining the subpopulations structure of the metapopulation
model (see SI Appendix). In particular, we identify 3,362 subpopu-
lations centered around IATA airports in 220 different countries.
The air-traffic network among the defined subpopulations is ob-
tained from the IATA databases that contain the list of worldwide
airport pairs connected by direct flights and the number of available
seats on any given connection. The high level of geographical
resolution of the subpopulation database enables us to integrate
also the mobility flows due to commuting patterns between sub-
populations (see Material and Methods) and construct the corre-
sponding commuting network. The main difficulty in defining a
commuting network worldwide is the lack of a global database as
opposed to the case of the air-traffic flow. Data are scattered in
different national and international databases that use different
administrative and geographical granularities, and several defini-
tions of commuting flows. We have collected commuting data from

29 countries (a full list of countries and the database properties are
reported in the SI Appendix) in five different continents. Each
dataset was mapped into the GLEaM Voronoi tessellation con-
structing the commuting networks at the subpopulation level.

In Fig. 1, we show the commuting network of the continental U.S.
as obtained by mapping the county commuting data onto the
subpopulations used by GLEaM. Commuting data do not consider
airline flows that are accounted for by the IATA dataset. On the
same scale, we also report the airline traffic network, readily
highlighting the difference in scale and spatial structure of the two
networks. The commuting network appears as an almost grid-like
lattice connecting neighboring subpopulations, whereas the airline
traffic network is dominated by long range connections. The wide
range of scales is evident also in the intensities of the mobility flows,
spanning several orders of magnitude, with the average commuting
flow being one order of magnitude larger than the average airline
traffic flow. Finally, it should be noted that, in general, commuting
flows refer to round trip processes with a characteristic time of the
order of 1/3 day (average duration of a work day) compared with
much longer characteristic times for airline travel (average value
around two weeks at the end.‡

To gain general insight on the commuting flow, we use the
general gravity model from transportation theory (22, 23) as a
starting point. This model assumes that the commuting flow wij
between subpopulation i (with population Ni) and subpopulation j
(with population Nj) takes on the form:

wij ! C
Ni

"Nj
#

f"dij#
, [1]

where C is a proportionality constant, " and # tune the depen-
dence with respect to each subpopulation size, and f(dij) is a
distance-dependent functional form. Gravity laws usually con-
sider power or exponential laws for the behavior of f(dij). The
results reported in the literature are variable and generally
depend on the way the subpopulations are defined. In our case,

†The Gridded Population of the World and The Global Rural-Urban Mapping Projects,
Socioeconomic Data and Applications Center of Columbia University, http://sedac.ciesin.
columbia.edu/gpw. ‡Travel Trends 2007, Office for National Statistics, www.statistics.gov.uk.
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Fig. 1. Multiscale mobility networks and gravity law fit. (A) Continental U.S. airline transportation network. (B) Continental U.S. commuting network. The width and
color (from blue to red) of the edges represent on a logarithmic scale the intensity of the mobility flow. (C) Commuting flux obtained from data (w(D)) rescaled by the
gravity law’s dependence on origin and destination populations (Ni
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#), as a function of the distance between subpopulations. The number of people commuting

between different urban areas decreases exponentially with distance up to 300 kms. (D–F) Ratio of commuting flux obtained from data (w(D)) to corresponding
commutingfluxpredictedbythegravitymodelwithfittedparameters (w(M)), asa functionofdistance,populationoforiginandpopulationofdestination, respectively.
The three plots provide values spread $1, showing that the synthetic networks generated by the functional form (see Table 1) reproduce well the commuting fluxes
obtained from data. Solid lines in all frames are guides to the eye.
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(7–10, 24–26). In this paper, we use the GLEaM computational
scheme based on a georeferenced metapopulation approach. The
model consists of three data layers. The population and mobility
layers allows the partition of the world into geographical census
regions coupled by population movements. This partition defines
the subpopulation network where the connections between sub-
populations represent the fluxes of individuals due to the
transportation infrastructures and mobility patterns. Superim-
posed on this subpopulation network is the epidemic layer that
defines inside each subpopulation the disease dynamics that
depends on the specific etiology of the disease considered (see
Material and Methods).

Multiscale Mobility Networks. The basic structure of GLEaM is
based on high-resolution population data† that estimates the pop-
ulation with a resolution given by cells of 15 ! 15 minutes of arc,
covering the whole planet. This population data allows the con-
struction of Voronoi tassels around transportation hubs in the
world, defining the subpopulations structure of the metapopulation
model (see SI Appendix). In particular, we identify 3,362 subpopu-
lations centered around IATA airports in 220 different countries.
The air-traffic network among the defined subpopulations is ob-
tained from the IATA databases that contain the list of worldwide
airport pairs connected by direct flights and the number of available
seats on any given connection. The high level of geographical
resolution of the subpopulation database enables us to integrate
also the mobility flows due to commuting patterns between sub-
populations (see Material and Methods) and construct the corre-
sponding commuting network. The main difficulty in defining a
commuting network worldwide is the lack of a global database as
opposed to the case of the air-traffic flow. Data are scattered in
different national and international databases that use different
administrative and geographical granularities, and several defini-
tions of commuting flows. We have collected commuting data from

29 countries (a full list of countries and the database properties are
reported in the SI Appendix) in five different continents. Each
dataset was mapped into the GLEaM Voronoi tessellation con-
structing the commuting networks at the subpopulation level.

In Fig. 1, we show the commuting network of the continental U.S.
as obtained by mapping the county commuting data onto the
subpopulations used by GLEaM. Commuting data do not consider
airline flows that are accounted for by the IATA dataset. On the
same scale, we also report the airline traffic network, readily
highlighting the difference in scale and spatial structure of the two
networks. The commuting network appears as an almost grid-like
lattice connecting neighboring subpopulations, whereas the airline
traffic network is dominated by long range connections. The wide
range of scales is evident also in the intensities of the mobility flows,
spanning several orders of magnitude, with the average commuting
flow being one order of magnitude larger than the average airline
traffic flow. Finally, it should be noted that, in general, commuting
flows refer to round trip processes with a characteristic time of the
order of 1/3 day (average duration of a work day) compared with
much longer characteristic times for airline travel (average value
around two weeks at the end.‡

To gain general insight on the commuting flow, we use the
general gravity model from transportation theory (22, 23) as a
starting point. This model assumes that the commuting flow wij
between subpopulation i (with population Ni) and subpopulation j
(with population Nj) takes on the form:

wij ! C
Ni

"Nj
#

f"dij#
, [1]

where C is a proportionality constant, " and # tune the depen-
dence with respect to each subpopulation size, and f(dij) is a
distance-dependent functional form. Gravity laws usually con-
sider power or exponential laws for the behavior of f(dij). The
results reported in the literature are variable and generally
depend on the way the subpopulations are defined. In our case,

†The Gridded Population of the World and The Global Rural-Urban Mapping Projects,
Socioeconomic Data and Applications Center of Columbia University, http://sedac.ciesin.
columbia.edu/gpw. ‡Travel Trends 2007, Office for National Statistics, www.statistics.gov.uk.
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The three plots provide values spread $1, showing that the synthetic networks generated by the functional form (see Table 1) reproduce well the commuting fluxes
obtained from data. Solid lines in all frames are guides to the eye.
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H is for homology
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Fig. 5. (a) Point clouds resulting from WTM maps that are constructed with (I) T = 0.05, (II) T = 0.2, (III) T = 0.3, and (IV) T = 0.45 for the noisy ring lattice

shown in panel (b) (which has N = 200 nodes, each with d(G) = 6 geometric and d(NG) = 2 non-geometric edges). The color of each node, or corresponding point,

denotes its activation time for one realization of contagion. Nodes in the contagion seed are dark blue and nodes that never adopt the contagion are gray. For visualization

purposes, we show the two-dimensional projections of the N -dimensional point clouds after applying principle component analysis [14, 52]. (c) We analyze point clouds

resulting from WTM maps with variable threshold T with respect to three criteria: geometry (top), dimensionality (center), and topology (bottom). We study the geometry

by considering node-to-node distances (in the metric of the embedding space, which in this case is the Euclidean norm) and computing the Pearson correlation coe�cient ⇢

between these distances for the WTM map, {yi} 2 RN , and the original node locations, {z(i)} 2 R2. We examine the dimensionality through its embedding dimension

P , which is calculated by studying the residual variance [14, 53]. We examine the topology by studying the persistent homology when applying a Vietoris-Rips filtration to

the point cloud [17, 29], where � denotes the di↵erence in lifespans for the two most persistent 1-cycles. Vertical dashed lines denote predicted shifts in contagion dynamics

given by Eqs. [ 1 ] and [ 2 ] [see Fig. 4(b)]. Note that there are infinite activation times and the WTM map is not well defined for T � T
(WFP)
0 = 3/8 (shaded region).

As expected for regime III, the geometry, topology, and dimensionality of the point cloud recovers that of the manifold M, as indicated by large correlation ⇢ ⇡ 1, an

estimated embedding dimension P = 2, and a single dominant 1-cycle (i.e., a ring) as indicated by large �. See the Methods section and the SI for further discussion of

these point-cloud analytics.

tion and the Sec. 3 of the SI Appendix for additional discussion of
these point cloud analytics.

In Fig. 6, we analyze WTM maps with variable T applied
to noisy ring lattices with variable ↵ = d(NG)/d(G) (shown for
N = 200, d(G) = 20 and variable d(NG)). For each point cloud
we study (a) geometry through ⇢, (b) dimensionality through P , and
(c) topology through �. Transitions between the qualitatively dif-
ferent regimes of these properties closely resemble the bifurcation
structure given Eqs. [1] and [2] with k = 0, which are shown by the
solid and dashed curves, respectively. In particular, for the regime
exhibiting WFP and no ANC, the geometry, embedding dimension
and topology of the underlying manifold giving rise to the noisy ring
lattice is consistently identified in the WTM map. Also note that
for the regime exhibiting both WFP and ANC, the extent to which
the contagion adheres to the network’s underlying manifold depends
on ↵ and T , which can can also be studied through the point cloud
measures ⇢, P and �. We illustrate this result further in Fig. 6(d),
by fixing ↵ = 1/3 and plotting ⇢, P , and � for variable thresh-

old T . We show results for (d(G), d(NG)) = (6, 2) (blue dashed
lines) and (d(G), d(NG)) = (24, 8) (red solid lines). The shaded
region, T � T

(WFP)
0 = 3/8, denotes thresholds for which the con-

tagion does not saturate the network and the WTM map is not well
defined. As expected, the network’s underlying manifold appears to
be well-recovered for the regime predominantly exhibiting WFP and
not ANC. Note that increasing node degree smooths the transitions
between regimes of contagion dynamics. Interestingly, increasing
the number of nodes N has the opposite effect: increasing N in-
creases the contrast between the regime that exhibits WFP and the
other regimes (see Sec. 5.2 of the SI Appendix).

To offer perspective on the performance of WTM maps in iden-
tifying a noisy geometric network’s underlying manifold even in the
presence of many non-geometric edges, arrows in Fig. 6(d) indicate
⇢, P , and � values for a variant of the dimension reduction algorithm
Isomap [53], which is applied here to identify manifold structure in
an unweighted network. Specifically, nodes are mapped to vectors
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P , and (c) topology through the di↵erence of life spans � (see Materials section). Note that the transitions between qualitatively di↵erent structure in the WTM maps (i.e.,

as seen through ⇢, P , and �) closely resembles the bifurcation structure from Eqs. [ 1 ] and [ 2 ], which are shown for k = 0 by solid and dashed curves, respectively. In

panel (d), we fix ↵ = 1/3 and plot (upper panel) ⇢, (center panel) P , and (lower panel) � as a function of threshold T . We show results for (d(G), d(NG)) = (6, 2)

(blue dashed lines) and (24, 8) (red solid lines). Note that there are infinite activation times for T � T
(WFP)
0 = 3/8 (shaded region). The arrows indicate ⇢, P , and �

values obtained for the embedding of nodes based on shortest paths, which may be thought of as a variant of the dimension reduction algorithm Isomap [53] (see text).
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to noisy ring lattices with variable ↵ = d(NG)/d(G) (shown for
N = 200, d(G) = 20 and variable d(NG)). For each point cloud
we study (a) geometry through ⇢, (b) dimensionality through P , and
(c) topology through �. Transitions between the qualitatively dif-
ferent regimes of these properties closely resemble the bifurcation
structure given Eqs. [1] and [2] with k = 0, which are shown by the
solid and dashed curves, respectively. In particular, for the regime
exhibiting WFP and no ANC, the geometry, embedding dimension
and topology of the underlying manifold giving rise to the noisy ring
lattice is consistently identified in the WTM map. Also note that
for the regime exhibiting both WFP and ANC, the extent to which
the contagion adheres to the network’s underlying manifold depends
on ↵ and T , which can can also be studied through the point cloud
measures ⇢, P and �. We illustrate this result further in Fig. 6(d),
by fixing ↵ = 1/3 and plotting ⇢, P , and � for variable thresh-

old T . We show results for (d(G), d(NG)) = (6, 2) (blue dashed
lines) and (d(G), d(NG)) = (24, 8) (red solid lines). The shaded
region, T � T

(WFP)
0 = 3/8, denotes thresholds for which the con-

tagion does not saturate the network and the WTM map is not well
defined. As expected, the network’s underlying manifold appears to
be well-recovered for the regime predominantly exhibiting WFP and
not ANC. Note that increasing node degree smooths the transitions
between regimes of contagion dynamics. Interestingly, increasing
the number of nodes N has the opposite effect: increasing N in-
creases the contrast between the regime that exhibits WFP and the
other regimes (see Sec. 5.2 of the SI Appendix).

To offer perspective on the performance of WTM maps in iden-
tifying a noisy geometric network’s underlying manifold even in the
presence of many non-geometric edges, arrows in Fig. 6(d) indicate
⇢, P , and � values for a variant of the dimension reduction algorithm
Isomap [53], which is applied here to identify manifold structure in
an unweighted network. Specifically, nodes are mapped to vectors
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as seen through ⇢, P , and �) closely resembles the bifurcation structure from Eqs. [ 1 ] and [ 2 ], which are shown for k = 0 by solid and dashed curves, respectively. In

panel (d), we fix ↵ = 1/3 and plot (upper panel) ⇢, (center panel) P , and (lower panel) � as a function of threshold T . We show results for (d(G), d(NG)) = (6, 2)

(blue dashed lines) and (24, 8) (red solid lines). Note that there are infinite activation times for T � T
(WFP)
0 = 3/8 (shaded region). The arrows indicate ⇢, P , and �

values obtained for the embedding of nodes based on shortest paths, which may be thought of as a variant of the dimension reduction algorithm Isomap [53] (see text).
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Fig. 5. (a) Point clouds resulting from WTM maps that are constructed with (I) T = 0.05, (II) T = 0.2, (III) T = 0.3, and (IV) T = 0.45 for the noisy ring lattice

shown in panel (b) (which has N = 200 nodes, each with d(G) = 6 geometric and d(NG) = 2 non-geometric edges). The color of each node, or corresponding point,

denotes its activation time for one realization of contagion. Nodes in the contagion seed are dark blue and nodes that never adopt the contagion are gray. For visualization

purposes, we show the two-dimensional projections of the N -dimensional point clouds after applying principle component analysis [14, 52]. (c) We analyze point clouds

resulting from WTM maps with variable threshold T with respect to three criteria: geometry (top), dimensionality (center), and topology (bottom). We study the geometry

by considering node-to-node distances (in the metric of the embedding space, which in this case is the Euclidean norm) and computing the Pearson correlation coe�cient ⇢

between these distances for the WTM map, {yi} 2 RN , and the original node locations, {z(i)} 2 R2. We examine the dimensionality through its embedding dimension

P , which is calculated by studying the residual variance [14, 53]. We examine the topology by studying the persistent homology when applying a Vietoris-Rips filtration to

the point cloud [17, 29], where � denotes the di↵erence in lifespans for the two most persistent 1-cycles. Vertical dashed lines denote predicted shifts in contagion dynamics

given by Eqs. [ 1 ] and [ 2 ] [see Fig. 4(b)]. Note that there are infinite activation times and the WTM map is not well defined for T � T
(WFP)
0 = 3/8 (shaded region).

As expected for regime III, the geometry, topology, and dimensionality of the point cloud recovers that of the manifold M, as indicated by large correlation ⇢ ⇡ 1, an

estimated embedding dimension P = 2, and a single dominant 1-cycle (i.e., a ring) as indicated by large �. See the Methods section and the SI for further discussion of

these point-cloud analytics.

tion and the Sec. 3 of the SI Appendix for additional discussion of
these point cloud analytics.

In Fig. 6, we analyze WTM maps with variable T applied
to noisy ring lattices with variable ↵ = d(NG)/d(G) (shown for
N = 200, d(G) = 20 and variable d(NG)). For each point cloud
we study (a) geometry through ⇢, (b) dimensionality through P , and
(c) topology through �. Transitions between the qualitatively dif-
ferent regimes of these properties closely resemble the bifurcation
structure given Eqs. [1] and [2] with k = 0, which are shown by the
solid and dashed curves, respectively. In particular, for the regime
exhibiting WFP and no ANC, the geometry, embedding dimension
and topology of the underlying manifold giving rise to the noisy ring
lattice is consistently identified in the WTM map. Also note that
for the regime exhibiting both WFP and ANC, the extent to which
the contagion adheres to the network’s underlying manifold depends
on ↵ and T , which can can also be studied through the point cloud
measures ⇢, P and �. We illustrate this result further in Fig. 6(d),
by fixing ↵ = 1/3 and plotting ⇢, P , and � for variable thresh-

old T . We show results for (d(G), d(NG)) = (6, 2) (blue dashed
lines) and (d(G), d(NG)) = (24, 8) (red solid lines). The shaded
region, T � T

(WFP)
0 = 3/8, denotes thresholds for which the con-

tagion does not saturate the network and the WTM map is not well
defined. As expected, the network’s underlying manifold appears to
be well-recovered for the regime predominantly exhibiting WFP and
not ANC. Note that increasing node degree smooths the transitions
between regimes of contagion dynamics. Interestingly, increasing
the number of nodes N has the opposite effect: increasing N in-
creases the contrast between the regime that exhibits WFP and the
other regimes (see Sec. 5.2 of the SI Appendix).

To offer perspective on the performance of WTM maps in iden-
tifying a noisy geometric network’s underlying manifold even in the
presence of many non-geometric edges, arrows in Fig. 6(d) indicate
⇢, P , and � values for a variant of the dimension reduction algorithm
Isomap [53], which is applied here to identify manifold structure in
an unweighted network. Specifically, nodes are mapped to vectors
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Fig. 6. Point cloud analytics applied to WTM maps with variable threshold T for noisy ring lattices with N = 200 nodes and variable ratio ↵ = d(NG)/d(G) (shown for

d(G) = 20 and variable d(NG)). For each point cloud we study (a) geometry through a Pearson correlation coe�cient ⇢, (b) dimensionality through the embedding dimension

P , and (c) topology through the di↵erence of life spans � (see Materials section). Note that the transitions between qualitatively di↵erent structure in the WTM maps (i.e.,

as seen through ⇢, P , and �) closely resembles the bifurcation structure from Eqs. [ 1 ] and [ 2 ], which are shown for k = 0 by solid and dashed curves, respectively. In

panel (d), we fix ↵ = 1/3 and plot (upper panel) ⇢, (center panel) P , and (lower panel) � as a function of threshold T . We show results for (d(G), d(NG)) = (6, 2)

(blue dashed lines) and (24, 8) (red solid lines). Note that there are infinite activation times for T � T
(WFP)
0 = 3/8 (shaded region). The arrows indicate ⇢, P , and �

values obtained for the embedding of nodes based on shortest paths, which may be thought of as a variant of the dimension reduction algorithm Isomap [53] (see text).
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anatomy where few modules uncovered at large spatial scales are
complemented by more modules at smaller spatial scales (27).

Dynamic Modular Structure.We next consider evolvability, which is
most readily detected when the organism is under stress (29) or
when acquiring new capacities such as during external training in
our experiment. We found that the community organization of
brain connectivity reconfigured adaptively over time. Using a re-
cently developed mathematical formalism to assess the presence
of dynamic network reconfigurations (25), we constructed multi-
layer networks in which we link the network for each time window
(Fig. 3A) to the network in the time windows before and after
(Fig. 3B) by connecting each node to itself in the neighboring win-
dows. We then measured modular organization (30–32) on this
linked multilayered network to find long-lasting modules (25).

To verify the reliability of our measurements of dynamic mod-
ular architecture, we introduced three null models based on per-
mutation testing (Fig. 3C). We found that cortical connectivity is
specifically patterned, which we concluded by comparison to a
“connectional” null model in which we scrambled links between
nodes in each time window (33). Furthermore, cortical regions
maintain these individual connectivity signatures that define
community organization, which we concluded by comparison to
a “nodal” null model in which we linked a node in one time win-
dow to a randomly chosen node in the previous and next time
windows. Finally, we found that functional communities exhibit
a smooth temporal evolution, which we identified by comparing
diagnostics computed using the true multilayer network structure
to those computed using a temporally permuted version (Fig. 3D).
We constructed this temporal null model by randomly reordering
the multilayer network layers in time.

By comparing the structure of the cortical network to those
of the null models, we found that the human brain exhibited a
heightened modular structure in which more modules of smaller
size were discriminable as a consequence of the emergence and
extinction of modules in cortical network evolution. The statio-
narity of communities, defined by the average correlation be-
tween partitions over consecutive time steps (34), was also higher
in the human brain than in the connectional or nodal null models,
indicating a smooth temporal evolution.

Learning. Given the dynamic architecture of brain connectivity, it
is interesting to ask whether the specific architecture changes

A

B 

Fig. 1. Structure of the investigation. (A) To characterize the network struc-
ture of low-frequency functional connectivity (24) at each temporal scale,
we partitioned the raw fMRI data (Upper Left) from each subject’s brain into
signals originating from N ¼ 112 cortical structures, which constitute the net-
work’s nodes (Upper Right). The functional connectivity, constituting the net-
work edges, between two cortical structures is given by a Pearson correlation
between the mean regional activity signals (Lower Right). We then statisti-
cally corrected the resulting N × N correlation matrix using a false discovery
rate correction (54) to construct a subject-specific weighted functional brain
network (Lower Left). (B) Schematic of the investigation that was performed
over the temporal scales of days, hours, and minutes. The complete experi-
ment, which defines the largest scale, took place over the course of three
days. At the intermediate scale, we conducted further investigations of
the experimental sessions that occurred on each of those three days. Finally,
to examine higher-frequency temporal structure, we cut each experimental
session into 25 nonoverlapping windows, each of which was a fewminutes in
duration.

A C

B

Fig. 2. Multiscale modular architecture. (A) Results for the modular decomposition of functional connectivity across temporal scales. (Left) The network plots
show the extracted modules; different colors indicate different modules and larger separation between modules is used to visualize weaker connections
between them. (A) and (B) correspond to the entire experiment and individual sessions, respectively. Boxplots show the modularity index Q (Left)
and the number of modules (Right) in the brain network compared to randomized networks. See Materials and Methods for a formal definition of Q.
(C) Modularity index Q and the number of modules for the cortical (blue) compared to randomized networks (red) over the 75 time windows. Error bars
indicate standard deviation in the mean over subjects.
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Figure 4.1: Dodecagon filtration: We show the three holes recognised by the weight rank clique
filtration in colour.

Figure 4.1: Dodecagon filtration: We show the three holes recognised by the weight rank clique
filtration in colour.
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a), b) and c) are examples of simplicial complexes. The collection of simplices we show
in d) is not a simplicial complex. The colours are used to indicate 2-simplices.

We use the notation τ ≤ σ to denote a face ofσ and τ < σ to denote a

proper face ofσ.

Remembering the building blocks we described in the beginning of this Section, we

can ask ourselves whether it is only possible to build shapes using 2-simplices (i.e.

triangles) or whether we could also combine these with higher- or lower-dimensional

simplices. The result such a combination is called a simplicial complex :

Definition 2.1.16 (simplicial complex) . A simplicial complex is a finite collection of
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Example III: Schizophrenia fMRI data

fMRI data during working memory task (University of Bari):
Schizophrenia patients, controls, siblings of schizophrenia patients.
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anatomy where few modules uncovered at large spatial scales are
complemented by more modules at smaller spatial scales (27).

Dynamic Modular Structure.We next consider evolvability, which is
most readily detected when the organism is under stress (29) or
when acquiring new capacities such as during external training in
our experiment. We found that the community organization of
brain connectivity reconfigured adaptively over time. Using a re-
cently developed mathematical formalism to assess the presence
of dynamic network reconfigurations (25), we constructed multi-
layer networks in which we link the network for each time window
(Fig. 3A) to the network in the time windows before and after
(Fig. 3B) by connecting each node to itself in the neighboring win-
dows. We then measured modular organization (30–32) on this
linked multilayered network to find long-lasting modules (25).

To verify the reliability of our measurements of dynamic mod-
ular architecture, we introduced three null models based on per-
mutation testing (Fig. 3C). We found that cortical connectivity is
specifically patterned, which we concluded by comparison to a
“connectional” null model in which we scrambled links between
nodes in each time window (33). Furthermore, cortical regions
maintain these individual connectivity signatures that define
community organization, which we concluded by comparison to
a “nodal” null model in which we linked a node in one time win-
dow to a randomly chosen node in the previous and next time
windows. Finally, we found that functional communities exhibit
a smooth temporal evolution, which we identified by comparing
diagnostics computed using the true multilayer network structure
to those computed using a temporally permuted version (Fig. 3D).
We constructed this temporal null model by randomly reordering
the multilayer network layers in time.

By comparing the structure of the cortical network to those
of the null models, we found that the human brain exhibited a
heightened modular structure in which more modules of smaller
size were discriminable as a consequence of the emergence and
extinction of modules in cortical network evolution. The statio-
narity of communities, defined by the average correlation be-
tween partitions over consecutive time steps (34), was also higher
in the human brain than in the connectional or nodal null models,
indicating a smooth temporal evolution.

Learning. Given the dynamic architecture of brain connectivity, it
is interesting to ask whether the specific architecture changes

A

B 

Fig. 1. Structure of the investigation. (A) To characterize the network struc-
ture of low-frequency functional connectivity (24) at each temporal scale,
we partitioned the raw fMRI data (Upper Left) from each subject’s brain into
signals originating from N ¼ 112 cortical structures, which constitute the net-
work’s nodes (Upper Right). The functional connectivity, constituting the net-
work edges, between two cortical structures is given by a Pearson correlation
between the mean regional activity signals (Lower Right). We then statisti-
cally corrected the resulting N × N correlation matrix using a false discovery
rate correction (54) to construct a subject-specific weighted functional brain
network (Lower Left). (B) Schematic of the investigation that was performed
over the temporal scales of days, hours, and minutes. The complete experi-
ment, which defines the largest scale, took place over the course of three
days. At the intermediate scale, we conducted further investigations of
the experimental sessions that occurred on each of those three days. Finally,
to examine higher-frequency temporal structure, we cut each experimental
session into 25 nonoverlapping windows, each of which was a fewminutes in
duration.

A C

B

Fig. 2. Multiscale modular architecture. (A) Results for the modular decomposition of functional connectivity across temporal scales. (Left) The network plots
show the extracted modules; different colors indicate different modules and larger separation between modules is used to visualize weaker connections
between them. (A) and (B) correspond to the entire experiment and individual sessions, respectively. Boxplots show the modularity index Q (Left)
and the number of modules (Right) in the brain network compared to randomized networks. See Materials and Methods for a formal definition of Q.
(C) Modularity index Q and the number of modules for the cortical (blue) compared to randomized networks (red) over the 75 time windows. Error bars
indicate standard deviation in the mean over subjects.
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anatomy where few modules uncovered at large spatial scales are
complemented by more modules at smaller spatial scales (27).

Dynamic Modular Structure.We next consider evolvability, which is
most readily detected when the organism is under stress (29) or
when acquiring new capacities such as during external training in
our experiment. We found that the community organization of
brain connectivity reconfigured adaptively over time. Using a re-
cently developed mathematical formalism to assess the presence
of dynamic network reconfigurations (25), we constructed multi-
layer networks in which we link the network for each time window
(Fig. 3A) to the network in the time windows before and after
(Fig. 3B) by connecting each node to itself in the neighboring win-
dows. We then measured modular organization (30–32) on this
linked multilayered network to find long-lasting modules (25).

To verify the reliability of our measurements of dynamic mod-
ular architecture, we introduced three null models based on per-
mutation testing (Fig. 3C). We found that cortical connectivity is
specifically patterned, which we concluded by comparison to a
“connectional” null model in which we scrambled links between
nodes in each time window (33). Furthermore, cortical regions
maintain these individual connectivity signatures that define
community organization, which we concluded by comparison to
a “nodal” null model in which we linked a node in one time win-
dow to a randomly chosen node in the previous and next time
windows. Finally, we found that functional communities exhibit
a smooth temporal evolution, which we identified by comparing
diagnostics computed using the true multilayer network structure
to those computed using a temporally permuted version (Fig. 3D).
We constructed this temporal null model by randomly reordering
the multilayer network layers in time.

By comparing the structure of the cortical network to those
of the null models, we found that the human brain exhibited a
heightened modular structure in which more modules of smaller
size were discriminable as a consequence of the emergence and
extinction of modules in cortical network evolution. The statio-
narity of communities, defined by the average correlation be-
tween partitions over consecutive time steps (34), was also higher
in the human brain than in the connectional or nodal null models,
indicating a smooth temporal evolution.

Learning. Given the dynamic architecture of brain connectivity, it
is interesting to ask whether the specific architecture changes
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B 

Fig. 1. Structure of the investigation. (A) To characterize the network struc-
ture of low-frequency functional connectivity (24) at each temporal scale,
we partitioned the raw fMRI data (Upper Left) from each subject’s brain into
signals originating from N ¼ 112 cortical structures, which constitute the net-
work’s nodes (Upper Right). The functional connectivity, constituting the net-
work edges, between two cortical structures is given by a Pearson correlation
between the mean regional activity signals (Lower Right). We then statisti-
cally corrected the resulting N × N correlation matrix using a false discovery
rate correction (54) to construct a subject-specific weighted functional brain
network (Lower Left). (B) Schematic of the investigation that was performed
over the temporal scales of days, hours, and minutes. The complete experi-
ment, which defines the largest scale, took place over the course of three
days. At the intermediate scale, we conducted further investigations of
the experimental sessions that occurred on each of those three days. Finally,
to examine higher-frequency temporal structure, we cut each experimental
session into 25 nonoverlapping windows, each of which was a fewminutes in
duration.
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B

Fig. 2. Multiscale modular architecture. (A) Results for the modular decomposition of functional connectivity across temporal scales. (Left) The network plots
show the extracted modules; different colors indicate different modules and larger separation between modules is used to visualize weaker connections
between them. (A) and (B) correspond to the entire experiment and individual sessions, respectively. Boxplots show the modularity index Q (Left)
and the number of modules (Right) in the brain network compared to randomized networks. See Materials and Methods for a formal definition of Q.
(C) Modularity index Q and the number of modules for the cortical (blue) compared to randomized networks (red) over the 75 time windows. Error bars
indicate standard deviation in the mean over subjects.
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Example III: Schizophrenia fMRI data

fMRI data during working memory task (University of Bari):
Schizophrenia patients, controls, siblings of schizophrenia patients.
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anatomy where few modules uncovered at large spatial scales are
complemented by more modules at smaller spatial scales (27).

Dynamic Modular Structure.We next consider evolvability, which is
most readily detected when the organism is under stress (29) or
when acquiring new capacities such as during external training in
our experiment. We found that the community organization of
brain connectivity reconfigured adaptively over time. Using a re-
cently developed mathematical formalism to assess the presence
of dynamic network reconfigurations (25), we constructed multi-
layer networks in which we link the network for each time window
(Fig. 3A) to the network in the time windows before and after
(Fig. 3B) by connecting each node to itself in the neighboring win-
dows. We then measured modular organization (30–32) on this
linked multilayered network to find long-lasting modules (25).

To verify the reliability of our measurements of dynamic mod-
ular architecture, we introduced three null models based on per-
mutation testing (Fig. 3C). We found that cortical connectivity is
specifically patterned, which we concluded by comparison to a
“connectional” null model in which we scrambled links between
nodes in each time window (33). Furthermore, cortical regions
maintain these individual connectivity signatures that define
community organization, which we concluded by comparison to
a “nodal” null model in which we linked a node in one time win-
dow to a randomly chosen node in the previous and next time
windows. Finally, we found that functional communities exhibit
a smooth temporal evolution, which we identified by comparing
diagnostics computed using the true multilayer network structure
to those computed using a temporally permuted version (Fig. 3D).
We constructed this temporal null model by randomly reordering
the multilayer network layers in time.

By comparing the structure of the cortical network to those
of the null models, we found that the human brain exhibited a
heightened modular structure in which more modules of smaller
size were discriminable as a consequence of the emergence and
extinction of modules in cortical network evolution. The statio-
narity of communities, defined by the average correlation be-
tween partitions over consecutive time steps (34), was also higher
in the human brain than in the connectional or nodal null models,
indicating a smooth temporal evolution.

Learning. Given the dynamic architecture of brain connectivity, it
is interesting to ask whether the specific architecture changes
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B 

Fig. 1. Structure of the investigation. (A) To characterize the network struc-
ture of low-frequency functional connectivity (24) at each temporal scale,
we partitioned the raw fMRI data (Upper Left) from each subject’s brain into
signals originating from N ¼ 112 cortical structures, which constitute the net-
work’s nodes (Upper Right). The functional connectivity, constituting the net-
work edges, between two cortical structures is given by a Pearson correlation
between the mean regional activity signals (Lower Right). We then statisti-
cally corrected the resulting N × N correlation matrix using a false discovery
rate correction (54) to construct a subject-specific weighted functional brain
network (Lower Left). (B) Schematic of the investigation that was performed
over the temporal scales of days, hours, and minutes. The complete experi-
ment, which defines the largest scale, took place over the course of three
days. At the intermediate scale, we conducted further investigations of
the experimental sessions that occurred on each of those three days. Finally,
to examine higher-frequency temporal structure, we cut each experimental
session into 25 nonoverlapping windows, each of which was a fewminutes in
duration.

A C

B

Fig. 2. Multiscale modular architecture. (A) Results for the modular decomposition of functional connectivity across temporal scales. (Left) The network plots
show the extracted modules; different colors indicate different modules and larger separation between modules is used to visualize weaker connections
between them. (A) and (B) correspond to the entire experiment and individual sessions, respectively. Boxplots show the modularity index Q (Left)
and the number of modules (Right) in the brain network compared to randomized networks. See Materials and Methods for a formal definition of Q.
(C) Modularity index Q and the number of modules for the cortical (blue) compared to randomized networks (red) over the 75 time windows. Error bars
indicate standard deviation in the mean over subjects.
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anatomy where few modules uncovered at large spatial scales are
complemented by more modules at smaller spatial scales (27).

Dynamic Modular Structure.We next consider evolvability, which is
most readily detected when the organism is under stress (29) or
when acquiring new capacities such as during external training in
our experiment. We found that the community organization of
brain connectivity reconfigured adaptively over time. Using a re-
cently developed mathematical formalism to assess the presence
of dynamic network reconfigurations (25), we constructed multi-
layer networks in which we link the network for each time window
(Fig. 3A) to the network in the time windows before and after
(Fig. 3B) by connecting each node to itself in the neighboring win-
dows. We then measured modular organization (30–32) on this
linked multilayered network to find long-lasting modules (25).

To verify the reliability of our measurements of dynamic mod-
ular architecture, we introduced three null models based on per-
mutation testing (Fig. 3C). We found that cortical connectivity is
specifically patterned, which we concluded by comparison to a
“connectional” null model in which we scrambled links between
nodes in each time window (33). Furthermore, cortical regions
maintain these individual connectivity signatures that define
community organization, which we concluded by comparison to
a “nodal” null model in which we linked a node in one time win-
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is interesting to ask whether the specific architecture changes

A

B 

Fig. 1. Structure of the investigation. (A) To characterize the network struc-
ture of low-frequency functional connectivity (24) at each temporal scale,
we partitioned the raw fMRI data (Upper Left) from each subject’s brain into
signals originating from N ¼ 112 cortical structures, which constitute the net-
work’s nodes (Upper Right). The functional connectivity, constituting the net-
work edges, between two cortical structures is given by a Pearson correlation
between the mean regional activity signals (Lower Right). We then statisti-
cally corrected the resulting N × N correlation matrix using a false discovery
rate correction (54) to construct a subject-specific weighted functional brain
network (Lower Left). (B) Schematic of the investigation that was performed
over the temporal scales of days, hours, and minutes. The complete experi-
ment, which defines the largest scale, took place over the course of three
days. At the intermediate scale, we conducted further investigations of
the experimental sessions that occurred on each of those three days. Finally,
to examine higher-frequency temporal structure, we cut each experimental
session into 25 nonoverlapping windows, each of which was a fewminutes in
duration.
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Fig. 2. Multiscale modular architecture. (A) Results for the modular decomposition of functional connectivity across temporal scales. (Left) The network plots
show the extracted modules; different colors indicate different modules and larger separation between modules is used to visualize weaker connections
between them. (A) and (B) correspond to the entire experiment and individual sessions, respectively. Boxplots show the modularity index Q (Left)
and the number of modules (Right) in the brain network compared to randomized networks. See Materials and Methods for a formal definition of Q.
(C) Modularity index Q and the number of modules for the cortical (blue) compared to randomized networks (red) over the 75 time windows. Error bars
indicate standard deviation in the mean over subjects.
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Bassett et al. (2011), PNAS: 7641 – 7646.
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POINT CLOUD Topological data analysis of Brexit (UK)
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NETWORK Topological data analysis of Brexit (EU)
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Linear equations

Suppose we are given 2 equations:
x + y − z = 0 and 2x + 3y + 2z = 0.
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Linear equations

Suppose we are given 2 equations:
x + y − z = 0 and 2x + 3y + 2z = 0.

x + y − z ))2x + 3y + 2z
2

12345y + 4z
2x + 2y − 2z

Now we can write

y + 4z = 0 =⇒ y = −4z

and substitute,

x + y − z = 0

x − 4z − z = 0

=⇒ x = 5z
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Nonlinear equations

ax2 + bx + c = 0
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Nonlinear equations

ax2 + bx + c = 0

x =
−b ±

√
b2 − 4ac

2a
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Nonlinear equations

Chemical reaction system

x + y
a−−→ 2x

3x
b−−→ y + 2z

z
c−−→ x , z

d−−→ y
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Nonlinear equations

Chemical reaction system

x + y
a−−→ 2x

3x
b−−→ y + 2z

z
c−−→ x , z

d−−→ y

axy − 3bx3 + cz = 0, −axy + bx3 + dz = 0, 2bx3 − cz − dz = 0
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Mathematical models

EX1: 
x - 4 = 0

LINEAR NON-LINEAR
O

ne
 s

pe
ci

es
 (x

)
M

or
e 

sp
ec

ie
s 

(x
,y

,z
)

  
EX2: 

        x + y - z = 0
2x + 3y + 2z = 0

EX3: 
ax2 + bx + c = 0

EX4:
axy - 3bx3 + cz = 0
-axy + bx3 +dz = 0
    2bx3 - cz - dz = 0
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Biochemical Reaction Networks

Shuttle model for Wnt signaling pathway
MacLean, Rosen, Byrne, Harrington 2015

The second column in Table 1 indicates the biological meaning of the 19 species. The symbols
in the last column are those used in the presentation of the Wnt shuttle model in [17].

The 19 species in the model interact according to the 31 reactions given in Table 2. Each
reaction comes with a rate constant ki. These are the coordinates of our parameter vector k.

Reaction Explanation

x1

k1
�� x2

k2

�� (In)activation of dishevelled, depends on Wnt

x2 + x4

k3
�� x14

k4

��
k5
�� x2 + x5 Destruction complex active ! inactive

x5 + x8

k6
�� x16

k7

��
k8
�� x4 + x8 Destruction complex inactive ! active

x4 + x10

k9
�� x18

k10

��
k11
�� x4 + � Destruction complex-dependent �-catenin degradation

� k12
�� x10 �-catenin production

x10
k13

�� � Destruction complex-independent �-catenin degradation

x3 + x6

k14
�� x15

k15

��
k16
�� x3 + x7 Destruction complex active ! inactive (nucleus)

x7 + x9

k17
�� x17

k18

��
k19
�� x6 + x9 Destruction complex inactive ! active (nucleus)

x6 + x11

k20
�� x19

k21

��
k22
�� x6 + � Destruction complex-dependent �-catenin degradation (nucleus)

x11
k23

�� � Destruction complex-independent �-catenin degradation (nucleus)

x11 + x12

k24
�� x13

k25

�� �-catenin binding to TCF (nucleus)

x2

k26
�� x3

k27

�� Shuttling of active dishevelled

x5

k28
�� x7

k29

�� Shuttling of inactive-form destruction complex

x10

k30
�� x11

k31

�� Shuttling of �-catenin

Table 2: The 31 reactions in the Wnt shuttle model.

The 31 reactions in Table 2 translate into a dynamical system ẋ = �(x;k). Here � is a
vector-valued function of the vectors of species concentrations x and rate constants k. The
choice of � is up to the modeler. In this paper, we assume that � represents the law of
mass action [13, §2.1.1]. This is precisely what is used in [17] for the Wnt shuttle model.
The resulting dynamical system is (1). We refer to [4,7,12,22,25] and their many references
for mass action kinetics and its variants. In summary, Table 2 translates into the dynamical
system (1) under the law of mass action. The five relations in (2) constitute a basis for the
linear space of conservation relations of the model in Table 2 assuming mass action kinetics.
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Models

Biochemical Reaction Networks

Shuttle model for Wnt signaling pathway
MacLean, Rosen, Byrne, Harrington 2015
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Computational algebra and topology is useful for biology!
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(a) London roads and metro
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Motivation

• Epidemics historically described by wave front propagation

Black death
-Marvel et al (2014) arXiv 1310.2636

Epidemics: Then and Now
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