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Background

Large scale machine learning models rely on stochastic
optimisation techniques to learn parameters of interest

It is useful to understand parameter uncertainty using
Bayesian inference

Usually simulate the Bayesian posterior using Markov Chain
Monte Carlo (MCMC) sampling algorithms

Stochastic gradient MCMC methods combine stochastic
optimisation methods with MCMC to reduce computation
time
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Notation

In the Bayesian approach, the unknown parameter θ is treated as a
random variable.

The Bayesian posterior distribution π(θ|x) has the form:

π(θ|x) ∝ p(θ)`(x |θ) = p(θ)
N∏
i=1

`(xi |θ),

where:

p(θ) is the prior distribution

`(xi |θ) is the likelihood associated with observation i

N is the size of the dataset
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Notation

In particular, gradient-based MCMC algorithms use the log
posterior f (θ) to propose moves:

f (θ) = k + f0(θ) +
N∑
i=1

fi (θ) ≡ k + log p(θ) +
N∑
i=1

log `(xi |θ)
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Stochastic Optimisation

Efficient way of learning model parameters, typically used in
machine learning.

Stochastic Gradient Ascent (SGA)

Set starting value θ0, batch size n� N, and step sizes εt . Iterate:

1 Take a subsample St of size n from the data

2 Estimate the gradient at θt by :

∇f̂ (θt) = ∇f0(θt) +
N

n

∑
xi∈St

∇fi (θt)

3 Set θt+1 = θt + εt∇f̂ (θt)

+γ(θt − θt−1)

There are many ways of speeding up convergence, such as adding
in a momentum term.
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Stochastic Optimisation

Robbins-Monro criteria for convergence:
If
∑∞

t=1 εt =∞ and
∑∞

t=1 ε
2
t <∞, then θt will converge to a

local maximum

Usually set εt = (αt + β)−γ with γ ∈ (0.5, 1]

These algorithms only converge to a point estimate of the
posterior mode
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MCMC

Many problems for which Bayesian inference would be useful
involve non-standard distributions and a large number of
parameters, making exact inference challenging.

MCMC algorithms aim to generate random samples from the
posterior. These samplers construct a Markov chain, often a
random walk, which converges to the desired stationary
distribution.
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Metropolis-Adjusted Langevin Algorithm (MALA)

The Langevin diffusion describes dynamics which converge to π(θ):

dθ(t) =
1

2
∇f (θ(t)) + db(t)

MALA uses the following discretisation to propose samples:

θt+1 = θt +
σ2

2
∇f (θt) + σηt

A Metropolis-Hastings accept/reject step is then used to correct
discretisation errors, ensuring convergence to the desired stationary
distribution.

Connie TrojanSupervisor: Srshti Putcha

Approximate Posterior Sampling via Stochastic Optimisation



MALA algorithm

Set starting value θ0 and step size σ2. Iterate the following:

1 Set θ∗ = θt + σ2

2 ∇f (θt) + σηt , where ηt ∼ N(0, I )

2 Accept and set θt+1 = θ∗ with probability

a(θ∗, θt) = min
{

1, π(θ
∗)q(θt |θ∗)

π(θt)q(θ∗|θt)

}
,

where q(x |y) = P(θ∗ = x |θt = y)

3 If rejected, set θt+1 = θt
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MALA
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Stochastic Gradient Langevin Dynamics (SGLD)

SGLD aims to reduce the computational cost of MALA by
replacing the full gradient calculation in the proposal with the
stochastic approximation ∇f̂ (θ):

θt+1 = θt +
εt
2
∇f̂ (θt) +

√
εtηt

Here, the εt are decreasing to 0 as in SGA.

Since the Metropolis-Hastings acceptance rate tends to 1 as the
step size decreases, the costly accept/reject step is ignored.
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SGLD algorithm

Set starting value θ0, batch size n, and step sizes εt . Iterate:

1 Take a subsample St of size n from the data

2 Estimate the gradient at θt by

∇f̂ (θt) = ∇f0(θt) +
N

n

∑
xi∈St

∇fi (θt)

3 Set θt+1 = θt + εt
2∇f̂ (θt) +

√
εtηt , where ηt ∼ N(0, I )

In practice, a fixed step size often works and is far easier to tune.
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SGLD
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SGLD with Control Variates (SGLD-CV)

The gradient estimate in SGLD is simple

The variance of the gradient estimator can be reduced using
control variates

This is achieved by finding θ̂, a value of θ close to the mode,
called the centering value. The gradient estimates in the
sampler will condition on θ̂
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SGLD-CV

Since

∇f (θt) = ∇f (θ̂) +
[
∇f (θt)−∇f (θ̂)

]
,

we can take a subsample St of the data and estimate ∇f (θt) by

∇f̃ (θt) = ∇f (θ̂) +
[
∇f̂ (θt)−∇f̂ (θ̂)

]
.

Here, ∇f̂ is the simple estimate used in SGLD.
In full our new estimate ∇f̃ is:

∇f (θ̂) +
[
∇f0(θt)−∇f0(θ̂)

]
+

N

n

∑
xi∈St

[
∇fi (θt)−∇fi (θ̂)

]
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SGLD-CV algorithm

Use stochastic optimisation to find θ̂, a value close to a mode

Calculate the full gradient ∇f (θ̂)

Set starting value θ̂, batch size n, and step sizes εt . Iterate:

1 Take a subsample St of size n from the data

2 Estimate the gradient at θt by ∇f̃ (θt)

3 Set θt+1 = θt + εt
2∇f̃ (θt) +

√
εtηt , where ηt ∼ N(0, I )
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Comparison

MALA

SGLD (n=10)

SGLD−CV 2.5

5.0

7.5

25 50 75 100
Passes through data

K
er

ne
l S

te
in

 D
is

cr
ep

en
cy

MALA

SGLD (n=100)

SGLD (n=50)

SGLD (n=10)

SGLD−CV

Connie TrojanSupervisor: Srshti Putcha

Approximate Posterior Sampling via Stochastic Optimisation



Comparison

MALA
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Comparison of the samplers for a more complicated
multimodal target distribution

Data distribution: x ∼ 1
2N(µ1, σ) + 1

2N(µ2, σ)

Each sampler was given 500 passes through the data and 20
passes of burn-in or optimisation
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The Covertype Dataset

The sampling algorithms discussed above were used to fit a binary
logistic regression model to the covertype dataset.
The aim was to predict the class of tree cover from 54 forest
terrain factors.
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The Covertype Dataset

Elevation (m)
Aspect (degrees azimuth)
Slope (degrees)
Horizontal distance to nearest surface water (m)
Vertical distance to nearest surface water (m)
Horizontal distance to nearest roadway (m)
Hillshade 9am (0-255)
Hillshade Noon (0-255)
Hillshade 3pm (0-255)
Horizontal distance to wildfire ignition points (m)
Wilderness area designation x4 (binary)
Soil type x40 (binary)

Class (1-7)

1: Spruce/Fir

2: Lodgepole Pine

3: Ponderosa Pine

4: Willow/
Cottonwood

5: Aspen

6: Douglas Fir

7: Krummholz
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The Covertype Dataset

The problem was converted to a binary classification problem
aiming to separate class 2 from the others

Instead of class, used the response variable y where:

yi =

{
1, if class(x i ) = 2
0, else

P(yi = 1|x i ) = σ(β0 + βTx i ) ≡
1

1 + exp [−(β0 + βTx i )]

The training dataset had 570 000 observations and an
additional 10 000 were used to test the model
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The Covertype Dataset
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Performance measure: log loss

1

|T |
∑
yi∈T

[yi log(p̂i ) + (1− yi ) log(1− p̂i )]
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Conclusions and Further Work

MALA is very impractical with large datasets

SGLD-CV consistently outperforms the other algorithms

Tuning SGLD is very difficult - have to test a wide range of
stepsizes and use a metric like KSD to assess performance

SGLD-CV also has a high tuning burden, since both the
optimisation and the sampling stages have to be tuned

Gradient calculations had to be done by hand, making it
difficult to implement more complicated models

It is more practical to use numerical differentiation for this
(e.g. sgmcmc for R)
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Any Questions?
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