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What is an extreme value?

I An extreme value is one which occurs with a very low
probability.

I There a two ways in which such a value can be classified

I The classification used depends on the problem
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What is an extreme value?

Figure: Level of rainfall at fixed location over time, with values
exceeding threshold in red
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Block maxima vs Threshold

Figure: Level of rainfall at fixed location over time, with block
maxima in red and threshold line in blue

Dylan Bahia

Investigating the effect of aggregation on extremal dependence



Distribution of block maxima

I Let Xi denote the i th observation of a random variable X
I Let Mn = max{X1, ...,Xn}.
I Suppose there exist a sequence of constants an > 0 and

bn such that

P

(
(Mn − bn)

an
≤ z

)
→ G (z) as n→∞,

where G is a non-degenerate distribution function.
I Then G is a Generalised Extreme Value (GEV)

distribution, where

G (z) = exp

(
−
(

1 + ξ

(
(z − µ)

σ

))− 1
ξ

)
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Distribution of block maxima

I Location parameter: −∞ < µ <∞

I Scale parameter: σ > 0

I Shape parameter: −∞ < ξ <∞
I Support: {z : 1 + ξ(z−µ)

σ
> 0}
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Effect of ξ

Figure: GEV dist. with µ = 5, σ = 1 and varying value of ξ
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Distribution of values exceeding threshold

I If the block maxima are GEV distributed, then for large
enough u, the distribution function of (X − u),
conditional on X > u, is approximately

H(y) = P(X < u + y | X > u)

= 1−
(

1 +
ξy

σ̃

)− 1
ξ

where σ̃ = σ + ξ(u − µ)

I This called the Generalised Pareto Distribution (GPD)

I It is has support y ≥ u if ξ ≥ 0 & u ≤ y ≤ u − σ
ξ

if
ξ < 0
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Choosing a threshold

I There are two factors to consider when choosing a
threshold:

- If the threshold is too low, the asymptotic properties of
the model will no longer hold, thus leading to bias.

- If the threshold is too high, there won’t be enough data
to estimate the model accurately, leading to high
variance.

I The standard practice is to choose the threshold to be as
low as possible, whilst making sure the model provides a
reasonable approximation.
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Return Levels
I A series of independent observations Xi , i = 1, ..., d , can

be blocked into sequences of length n (the length is often
1 year), generating a series of block maxima Mn,1, ...Mn,m,
where m is the number of maxima.

I A GEV distribution can be fitted to these maxima, and
extreme quantiles can be estimated by inverting the
distribution function:

zp =

{
µ− σ

ξ
(1− (−log(1− p))−ξ) for ξ 6= 0

µ− σ log(− log(1− p)) for ξ = 0

where G (zp) = 1− p.

I zp is the return level associated with the return period 1/p
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Return Levels

Figure: Expected return level after given period of years
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Extremal Dependence Measures

I It is very useful to look at how likely extremes of different
variables are to occur together

I This is known as asymptotic dependence

I The are various summary measures for characterising this
dependence

I I have looked into two of them; χ and η
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Extremal Dependence Measures - χ

I χ is known as the upper tail index

I It is a measure of asymptotic dependence

I Given two random variables X and Y , they can be
transformed to uniform margins, producing respective
variables U and V

I χ = limu→1P(V > u | U > u)

I χ takes values between 0 and 1

I 0 corresponds to asymptotic independence

I 1 corresponds to perfect asymptotic dependence

I χ > 0 implies asymptotic dependence

I As χ increases, asymptotic dependence increases
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Empirical calculation of χ

I Let X and Y be set of observations of random variables
of length n and m respectively

I Let u be the threshold

I Let U = rank(X )
(n+1)

I Let V = rank(Y )
(n+1)

I Then χ̂ = Σ(U>u|V>u)
Σ(V>u)

Dylan Bahia

Investigating the effect of aggregation on extremal dependence



Empirical calculation of χ

I Let X and Y be set of observations of random variables
of length n and m respectively

I Let u be the threshold

I Let U = rank(X )
(n+1)

I Let V = rank(Y )
(n+1)

I Then χ̂ = Σ(U>u|V>u)
Σ(V>u)

Dylan Bahia

Investigating the effect of aggregation on extremal dependence



Empirical calculation of χ

I Let X and Y be set of observations of random variables
of length n and m respectively

I Let u be the threshold

I Let U = rank(X )
(n+1)

I Let V = rank(Y )
(n+1)

I Then χ̂ = Σ(U>u|V>u)
Σ(V>u)

Dylan Bahia

Investigating the effect of aggregation on extremal dependence



Empirical calculation of χ

I Let X and Y be set of observations of random variables
of length n and m respectively

I Let u be the threshold

I Let U = rank(X )
(n+1)

I Let V = rank(Y )
(n+1)

I Then χ̂ = Σ(U>u|V>u)
Σ(V>u)

Dylan Bahia

Investigating the effect of aggregation on extremal dependence



Empirical calculation of χ

I Let X and Y be set of observations of random variables
of length n and m respectively

I Let u be the threshold

I Let U = rank(X )
(n+1)

I Let V = rank(Y )
(n+1)

I Then χ̂ = Σ(U>u|V>u)
Σ(V>u)

Dylan Bahia

Investigating the effect of aggregation on extremal dependence



Simulations

Figure: Simulation of random
variables X and Y such that
χ̂ = 0.9

Figure: Simulation of random
variables X and Y such that
χ̂ = 0.1
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Extremal Dependence Measures - η

I η is known as the coefficient of tail dependence
I It is a measure of asymptotic independence
I Let X and Y be random variables on exponential margins
I P(X > x ,Y > x) ∼ L(x)exp(− x

η
)

where L(x) is a slowly varying function
I A slowly varying function satisfies

L(cx)

L(x)
∼ 1 as x →∞

for some constant c > 0
I It takes values between 0.5 and 1
I 1 corresponds to asymptotic dependence
I eta < 1 implies asymptotic independence
I As η decreases, asymptotic independence increases
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Application

I Gridded hourly precipitation data taken over the North
West of England

I Taken over December, January and February from 1990
to 2014

I Data comes from climate simulations
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Applications

I I calculated empirical estimates for pairwise values of χ
and η between locations

I The purpose is to look at how the dependence structure
changes between aggregation levels
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Changes in χ

Figure: Values of χ with respect to distance at 4 different
aggregation levels
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