

### What is the FRCPSP?



Visual representations of activities in a RCPSP (left) & a FRCPSP (right).

- A Project scheduling problem (PSP) is an optimization problem where the goal is to minimize the total duration (makespan) of a project consisting of a set of activities with resource & time requirements.
- When a PSP is Resource constrained (RCPSP), this means that there are limits imposed upon the number of resources available at a given time.
- In a RCPSP, the resource allocation for each activity is usually fixed. In a FRCPSP, the activities are given a work content which can be fulfilled flexibly.



Figure 2: Visual representation of a positive PC (top) & a negative PC (bottom).

- A positive PC is the minimum lag between the start of a predecessor & the start of a successor.
- A negative PC is the maximum lead between the start of a predecessor & the start of a successor.



Figure 3: A network showing the PCs between activities in a project.

https://www.lancaster.ac.uk/stor-i/internships/interns/

# Flexible resource constrained scheduling problem (FRCPSP)

Jack Trainer

# The greedy serial generation scheme (SGS)

- The SGS is the heart of the heuristic algorithm we use to solve the FRCPSP. We input lists of activities known as activity list representations (ALRs) & the SGS attempts to build a schedule of activities step-by-step.
- A greedy SGS schedules each activity at its earliest possible precedence- & resource- feasible start time & allocates the maximum number of available resources to the activity.



Figure 4: Example of a failed schedule generated by the greedy SGS.

## Flaws of the greedy SGS

- In some projects, time constraints will require that certain activities need to be started whilst their predecessor is ongoing. Unless both activities can use their maximum resource the greedy SGS will not allow this.
- Always schedules activities as soon as possible leading to activities being stuck in gaps between other activities and not able to meet constraints.



# Comparison of the greedy SGS with the new SGS

| Old SGS | New SGS | Old SGS | New SGS | Old SGS | New SGS |
|---------|---------|---------|---------|---------|---------|
| NA      | 35      | 35      | 35      | 57      | 57      |
| 37      | 37      | 43      | 43      | 71      | 71      |
| 26      | 25      | 37      | 38      | NA      | NA      |
| 32      | 32      | 43      | 38      | 26      | 24      |
| 28      | 27      | 58      | 54      | 56      | 55      |
| NA      | 38      | 23      | 23      | 42      | 45      |
| 36      | 36      | 46      | 40      | 51      | 55      |
| 31      | 35      | 33      | 33      | 43      | 48      |
| 34      | 29      | 86      | 86      | 57      | 57      |
| NA      | NA      | 29      | 29      | 27      | 27      |
| 22      | 21      | 28      | 28      | NA      | NA      |
| 28      | 33      | 40      | 40      | 47      | 47      |
| 31      | 31      | 34      | 33      | 33      | 33      |
| 28      | 33      | 40      | 40      | 40      | 40      |
| 25      | 25      | NA      | 26      | 29      | 30      |
| 21      | 21      | 28      | 28      | 35      | 28      |
| 30      | 35      | 24      | 24      | 34      | 31      |
| 35      | 35      | NA      | NA      | 27      | 26      |
| 24      | 24      | 32      | 32      | 54      | 50      |
| 66      | 66      | 27      | 28      | 34      | 34      |
| 51      | 51      | 36      | 36      | NA      | NA      |
| 16      | 14      | 16      | 16      | 28      | 28      |
| 33      | 31      | 22      | 22      | 34      | 34      |
| 36      | 36      | 52      | 57      | 43      | 43      |
| 14      | 14      | 32      | 30      | 53      | 53      |
| 32      | 29      | 43      | 37      | 51      | 51      |
| 45      | 45      | 32      | 32      | 33      | 36      |
| 39      | 41      | 19      | 20      | 30      | 30      |
| NA      | 49      | 33      | 30      | 14      | 14      |
| 33      | 33      | 19      | 22      | 23      | 23      |

Figure 6: Comparison between the best makespans achieved by the old SGS and the new SGS acting on 10 random ALRs for 90 different projects each consisting of around 10 activities each. NA indicates a failure to produce a schedule (some projects have no feasible solution).

35.65.

# Conclusion & Future aims

- recognise these situations and find the correct ALR quickly.
- algorithm is watertight.
- Testing with real-life data e.g. from Sellafield Ltd.

### References

- Kolisch, R. & Hartmann, S. (1999). *Project scheduling*, 147–178. computational analysis.
- Naber, A. & Kolisch, R. (2014). European Journal of Operational Research, 239335–348. MIP models for resource-constrained project scheduling with flexible resource profiles.

Lancaster University

• The average makespan of the old SGS is 35.74 and for the new SGS it is

For certain projects (The three projects in the third column of the table), the SGS will only produce a successful schedule for a very specific ALR which is often not tested. The algorithm needs to be improved so it can

• Testing larger projects and data-sets to demonstrate that the new

Heuristic algorithms for the resource-constrained project scheduling problem: Classification and