Recruitment to Phase III Clinical Trials

Katie Dixon Supervisor: Szymon Urbas

September 5, 2019

Katie Dixon Supervisor: Szymon Urbas

STOR-i Summer Internship

September 5, 2019 1 / 22

Definition

A <u>clinical trial</u> is a planned experiment on human beings which is designed to evaluate the effectiveness of one, or more, forms of treatment. [Altman, 1991]

- Out of 114 trials studied, less than 1/3 of trials achieved the recruitment target in the time period and 1/3 of trials had to have extensions. [Campbell et al., 2007]
- Out of 1017 trials studied, 24.9% of trials were discontinued, 39.9% of these were discontinued due to poor recruitment. [Kasenda et al., 2014]

- The clinical trial sponsor requires a higher power.
- Keep centres open for longer periods.
 - Increased running costs.
 - Apply for additional funding.
- The trial is terminated altogether.
 - Discredits investigators/institutions.

- C number of centres,
- τ_c number of days that centre c has been open,
- $N_c^{(t)}$ number of arrivals in centre c on day t,
- $N_c^{(\cdot)}$ number of arrivals in centre *c* over the whole time period,
- λ_c^0 rate of arrivals in centre c,
- $g_c(s, \theta)$ curve shape.

- C number of centres,
- τ_c number of days that centre c has been open,
- $N_c^{(t)}$ number of arrivals in centre c on day t,
- $N_c^{(\cdot)}$ number of arrivals in centre *c* over the whole time period,
- λ_c^0 rate of arrivals in centre c,
- $g_c(s, \theta)$ curve shape.

$$\lambda_c^0 \sim \mathsf{Gam}(\alpha, \alpha/\phi)$$

 $N_c^{(t)}|\lambda_c^0 \sim \mathsf{Pois}\left(\lambda_c^0 \int_{t-1}^t g_c(s; \theta) \; \mathsf{d}s\right)$

Constant Recruitment Rate

Constant Recruitment Rate

Simulated arrivals with a constant rate for $\alpha = 1.5, \ \phi = 0.2$ and $\tau = 600$.

$$N_c^{(\cdot)}|\lambda_c^0 \sim \operatorname{Pois}\left(\lambda_c^0 \tau_c\right).$$

Anisimov and Federov (2007) assume that:

- The empty centres do not have a substantial effect on the estimation of parameters.
- The recruitment is homogeneous across centres.

Expected number of empty centres against expected number of arrivals in a given centre over the whole time period when $\alpha = 1.5$ and C = 200.

The probability of one centre having $n_c^{(\cdot)} \in \mathbb{N}$ recruits across the τ_c days is

$$\mathbb{P}\left(N_{c}^{(\cdot)}=n_{c}^{(\cdot)}|\alpha,\phi\right)=\frac{\Gamma\left(\alpha+n_{c}^{(\cdot)}\right)}{\Gamma(\alpha)n_{c}^{(\cdot)}!}\left(\frac{\alpha}{\tau_{c}\phi+\alpha}\right)^{\alpha}\left(\frac{\tau_{c}\phi}{\tau_{c}\phi+\alpha}\right)^{n_{c}^{(\cdot)}}$$

When $\tau_c = \tau$ for C = 1, ..., C, the profile log-likelihood for α can be found with

$$\hat{\phi} = \frac{n_{\Sigma}}{\tau C}$$
 where $n_{\Sigma} = \sum_{c=1}^{C} n_c^{(\cdot)}$.

.

- N_c^+ only included if $N_c > 0$.
- C^+ number of non empty centres.

The truncated estimate is

$$\tilde{\phi} = \frac{n_{\Sigma}^+}{\tau C^+}.$$

The bias of $\tilde{\phi}$ is tractable, we find it to be

$$\mathbb{E}[\tilde{\phi}] - \phi = \frac{\phi \cdot \mathbb{P}(N_c^{(\cdot)} = 0)}{1 - \mathbb{P}(N_c^{(\cdot)} = 0)}$$
$$= \frac{\phi \alpha^{\alpha}}{(\tau \phi + \alpha)^{\alpha} - \alpha^{\alpha}}$$

Estimates of $\hat{\alpha}$ and $\tilde{\alpha}$ when $\alpha = 1.5, \ \phi = 1/120, \ \tau = 600$ and C = 200.

Decaying Recruitment Rate

Katie Dixon Supervisor: Szymon Urbas

э

Simulated arrivals with a decaying rate for $\alpha = 1.5$, $\phi = 0.2$ and $\tau = 600$.

14 / 22

Nonhomogeneous Poisson process:

$$N_c^{(t)}|\lambda_c^0 \sim \operatorname{Pois}\left(\lambda_c^0 \int_{t-1}^t g_c(s;\theta) \,\mathrm{d}s\right),$$

$$g_c(s;\theta) = \begin{cases} g_0(s;\theta) = 1 & \text{with probability } \eta_0 \\ g_\infty(s;\theta) = \frac{\tau\theta\exp(-\theta s)}{1-\exp(-\theta \tau)} & \text{with probability } \eta_\infty. \end{cases}$$

< 行

э

The probability of one centre having \mathbf{n}_c recruits is

$$\mathbb{P}(\mathbf{N}_{c} = \mathbf{n}_{c} | \alpha, \phi, \theta) = \frac{\Gamma\left(\alpha + n_{c}^{(\cdot)}\right)}{\Gamma(\alpha) \prod_{t=1}^{\tau_{c}} n_{c}^{(t)}!} \left(\frac{\alpha/\phi}{\tau_{c} + \alpha/\phi}\right)^{\alpha} \left(\frac{1}{\tau_{c}\phi + \alpha/\phi}\right)^{n_{c}^{(\cdot)}} \times \left[\eta_{0} \prod_{t=1}^{\tau_{c}} \int_{t-1}^{t} g_{0}(s;\theta) \, \mathrm{d}s + \eta_{\infty} \prod_{t=1}^{\tau_{c}} \int_{t-1}^{t} g_{\infty}(\theta;s) \, \mathrm{d}s\right].$$

< 🗗 🕨 <

990

æ

• • • • • • • • •

æ

Bayes' Rule:

$$\mathbb{P}(g_c = g_i | \mathbf{n}_c) = \frac{\mathbb{P}(\mathbf{N}_c = \mathbf{n}_c | g_i) \mathbb{P}(g_i)}{\sum_k \mathbb{P}(\mathbf{N}_c = \mathbf{n}_c | g_k) \mathbb{P}(g_k)}.$$
$$\mathbb{P}(g_c = g_i | \mathbf{n}_c) = \frac{\eta_i \prod_{t=1}^{\tau_c} \int_{t-1}^t g_i(s; \theta) \, \mathrm{d}s}{\eta_0 \prod_{t=1}^{\tau_c} \int_{t-1}^t g_0(s; \theta) \, \mathrm{d}s + \eta_\infty \prod_{t=1}^{\tau_c} \int_{t-1}^t g_\infty(s; \theta) \, \mathrm{d}s}$$

æ

Correct classifications for $\alpha = 1.5$, $\theta = 0.01$, $\eta_0 = 0.5$ and C = 200.

Conclusions

- It is not reasonable to assume that the empty centres do not affect the parameter estimation.
- Our method of parameter estimation can identify recruitment trends in individual centres; however, it struggles when we don't have much data.

Conclusions

- It is not reasonable to assume that the empty centres do not affect the parameter estimation.
- Our method of parameter estimation can identify recruitment trends in individual centres; however, it struggles when we don't have much data.

Further Work

- Extend to different types of decay and incorporate into one model.
- Consider the case where some centres are open for a different number of days.
- Analyse what happens when we have values of *η* close to the boundaries of [0,1].

Altman, D. G. (1991).

Practical statistics for medical research. CRC press.

Campbell, M. K. et al. (2007).

Recruitment to randomised trials: strategies for trial enrolment and participation study. the steps study.

Health technology assessment (Winchester, England), 11(48):iii-ix.

Kasenda, B. et al. (2014).

Prevalence, characteristics, and publication of discontinued randomized trials. *JAMA*, 311(10):1045–1052.