Changepoints
 Likelihood Ratio Test
 Detectability
 Analysis & Results
 Future Work

 0
 0
 0
 0
 0
 0

Detectability of Changepoints Using the Likelihood Ratio Test Statistic

Katharina Ring¹; Supervisors: Thomas Grundy², Mirjam Kirchner²

¹LMU Munich, Department of Statistics, ²STOR-i, Lancaster University

September 6, 2019

Figure 1: A time series exhibiting a change at t_4

- changepoint detection using the Likelihood Ratio Test
- find detection boundary, separating detectable from undetectable changes
- through a simulation study:
 - before the change: $y \stackrel{iid}{\sim} N(0,1)$
 - after the change: $y \stackrel{\textit{iid}}{\sim} N(\mu, \sigma^2)$ with $\mu \neq 0$ and/or $\sigma^2 \neq 1$

Likelihood Ratio Test

The Likelihood Ratio Test as a binary classifier:

 H_0 : no changepoint H_1 : one changepoint

$$\lambda = 2 \left(\max_{\tau} \underbrace{\left[\log p(y_{1:\tau} | \hat{\theta}_1) + \log p(y_{\tau+1:n} | \hat{\theta}_2) \right]}_{\text{Log-Likelihood with changepoint } \tau} - \underbrace{\log p(y_{1:n} | \hat{\theta})}_{\text{Log-Likelihood without }} \right)$$

 \Rightarrow Reject H_0 if λ surpasses a given threshold c.

Changepoints

Detectability

Definition of detectability:

c is chosen s.t. the true positive rate (empirical power) is 80 % \Rightarrow false positive rate (empirical type I error) is at most 5 %.

Get points for estimation:

- *points of interest* where the ROC passes the boundary region, i. e. the point (0.05, 0.8) with distance < 0.01
- find these points using Surrogate Model Bayesian Optimization

 \rightarrow take median of points to estimate boundary

Changepoints O Detectability

Analysis & Results

Future Work 0

Univariate Analysis & Results

Variables of interest:

Figure 5: The detection boundary for the univariate case

Changepoints 0 Detectability

Analysis & Results

Multivariate Analysis & Results

Variables of interest:

Figure 6: The detection boundary for the multivariate case

Future Work

More variables of interest can be investigated:

- univariate case: length of time series
- multivariate case: length of time series, size of variance change, and location

Additionally: multiple changepoints per time series.

Problem: computationally expensive

Possible solutions:

- better optimization algorithm
- more efficient LRT calculation, e.g. cusum

References

 Eckley, I., Fearnhead, P., and Killick, R. (2011). Analysis of Changepoint Models. In *Bayesian time series models*, Cambridge University Press.
 Cai, T., Jeng, J., and Jin, J. (2011). *J. R. Statist. Soc. B*, 73(5): 629–662. Optimal detection of heterogeneous and heteroscedastic mixtures.