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The Multi-Armed Bandit Problem

K ‘arms’, with different rewards:

@ Rewards follow a probability distribution — explore different arms

@ Want to maximise reward — exploit arms which give a higher reward
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The Multi-Armed Bandit Problem

K ‘arms’, with different rewards:

@ Rewards follow a probability distribution — explore different arms

@ Want to maximise reward — exploit arms which give a higher reward

Example applications

@ Recommender systems (e.g. targeted advertising)

@ Adaptive clinical trials
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Mathematically

Our aim is to minimise the ‘regret’ R, after n runs,

n
Ro=np" —E > X
t=1

@ t - number of time steps
@ 1* - mean of the optimum arm

@ X; - reward at time t
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What is a good algorithm?
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Baseline strategy: ¢,-Greedy

Probability  Arm selected A;
1—¢, arg max, [fik(t — 1)]
€n random

@ £, decreases with time — less exploration at late times.

e Two tuning parameters, c and d (¢ > 0,0 < d < 1)
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Optimism in the face of uncertainty

Optimism Principle: act as if the environment is as nice as plausibly
possible [Lattimore and Szepesvari, 2018].
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UCB algorithms

Select the arm maximising the ‘upper confidence bound’, which is usually of the form
fe(t—=1)+F(Ti(t —1)).
—_—

exploitation exploration

@ [x(t —1) - observed mean of arm k

@ f(Tk(t — 1)) - decreasing function of Tx
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UCB algorithms

Select the arm maximising the ‘upper confidence bound’, which is usually of the form
fe(t—=1)+F(Ti(t —1)).
—_—

exploitation exploration

@ [x(t —1) - observed mean of arm k

@ f(Tk(t — 1)) - decreasing function of Tx

Example forms of the upper confidence bound:

© UCB(a): fu(t —1) + / Si=H

@ KL-UCB: max{qg: Tk(t — 1)kl (ax(t —1),q) <In(t — 1) + cIn(In(t — 1))}

Matthew Gorton Supervisor: Alan Wise Optimism and multi-armed bandits September 5, 2019 7 /18



£,-Greedy vs UCB

Best values: UCB(«): a ~ 0.5,¢,-Greedy: c ~ 1,d
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Performance on a 9-armed Bernoulli bandit: dashed lines represent the 95%
confidence interval.
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Optimal approaches

Lower regret bound

@ Can calculate the asymptotic lower bound on the regret [Lai and Robbins, 1985]
@ UCB(«) does not match lower regret bound. Other algorithms (KL-UCB and
Thompson Sampling) can match the lower bound in the case of a Bernoulli bandit

= Thompson Sampling
s —— KL-UCB
«+ asymptotic lower bound

Mean regret
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Performance on a 2-armed Bernoulli bandit: dashed lines represent the 95%
confidence interval
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Contextual bandits

@ Arms A; are now normalised vectors

@ The extent to which arms ‘point’ in the same direction shows their
similarity

im im
A
.‘ ’ 2
A o

Arms orthogonal: no Arms give information about
information about A from Aj. one another.

Matthew Gorton Supervisor: Alan Wise Optimism and multi-armed bandits September 5, 2019



Contextual Bandits: Regret

| A,
Unknown context vector 6: represents optimal arm
‘direction’ e

Regret is now defined as

,,—Z[A* ~ (A.6)].

where A* is the optimum arm.

Matthew Gorton Supervisor: Alan Wise Optimism and multi-armed bandits September 5, 2019 11 /18



E.g. Music streaming

Imagine you are a music streaming service, producing playlists.
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E.g. Music streaming

Imagine you are a music streaming service, producing playlists.
e Arms (playlists) Ak are made of songs from d artists, e.g. ford =5
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E.g. Music streaming

Imagine you are a music streaming service, producing playlists.
e Arms (playlists) Ak are made of songs from d artists, e.g. ford =5

o e

077775057
V3 V3T V3

@ On average, the user listens to each artist's songs i = 1,...,d for a
time 6;, so @ may look like

0 = [53,23,9, 39, 16]
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E.g. Music streaming

Imagine you are a music streaming service, producing playlists.
e Arms (playlists) Ak are made of songs from d artists, e.g. ford =5

o e

077775057
V3 V3T V3

@ On average, the user listens to each artist's songs i = 1,...,d for a
time 6;, so @ may look like

0 = [53,23,9, 39, 16]

@ Mean time user listens to playlist: (Ag,0) = 27.7
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LinUCB

Same idea as previous UCB algorithms. The upper confidence bound is
now

(Orx, Ax) + Be(9)||Akllg1,

@ 0, - estimated context vector
@ B:(0) - encourages exploration

° HAkHGt—; - encourages exploitation (like a standard deviation)
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LinUCB: Performance

Mean regret

—— regret of LinUCB
— regret of UCB.
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Expected regret curve. Produced by Alan
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@ Does algorithmic performance depend on arm pdfs?
e Only explored sub-Gaussian distributions

@ Extensions to LinUCB
e Simple LinUCB requires great fine tuning
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Extra: Equivalent expression for regret

Using the regret decomposition lemma, the regret can also be expressed as

Ro= Y AE[Ti(n)],
ke[K]
e [K] =1,2,..K - set of arm indices
o A - difference in mean of arm k and mean of the optimum arm

@ Ti(n) - number of times arm k has been played after n runs
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Extra: Expression for asymptotic lower regret bound

[Lai and Robbins, 1985] find the asymptotic lower regret bound is given by

> _ Bk In(T),

KA >0 kl(lj’k’ :U’*)

® kl(pik, pii) - Kullback-Leibler divergence between the pdfs of the
optimum arm and arm k

@ T - total running time
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