

The Problem

Set-up: K 'arms', with different rewards. The reward from each arm follow an unknown probability distribution. Initially, we don't know which arm is best.

Our aim: Find an algorithm minimising the 'cumulative regret' after *n* runs,

$$R_n \equiv n\mu^* - \mathbb{E}\left[\sum_{t=1}^n X_t
ight] = \sum_{k \in [K]} \Delta_k \mathbb{E}[T_k(n)],$$

- μ^* mean of the optimum arm
- X_t reward at time t
- [K] = 1, 2, ...K set of arm indices
- Δ_k difference in mean of arm k and mean of the optimum arm
- $T_k(n)$ number of times arm k has been played after *n* runs

This sort of problem arises in *e.g.* targeted advertising, clinical trials

Aim to find an algorithm achieving 'sub-linear regret', i.e.

 $\lim \frac{R_n}{m} = 0.$ $n \rightarrow \infty$ **n**

The Exploration/Exploitation Dilemma

To minimise regret, an algorithm must balance two competing approaches:

- **Exploration**: To better estimate the expected reward of each arm, we need to test different arms.
- **Exploitation**: We should select arms that give us a higher reward more often.

The Optimism Principle

Our approach is to assume that the environment is as nice as 'plausibly' possible' [Lattimore and Szepesvári, 2018].

E.g. Choosing a cafe

- Choose a cafe you know well (A), or a new cafe (B) you haven't tried before?
- Optimism principle \rightarrow try the new cafe several times, and update your information

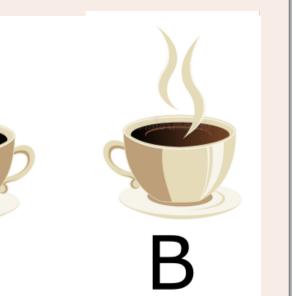
Investigating Optimism in the **Exploration/Exploitation Dilemma**

Matthew Gorton¹

¹Physics, Lancaster University

Supervisor: Alan Wise² ²Maths & Stats, Lancaster University

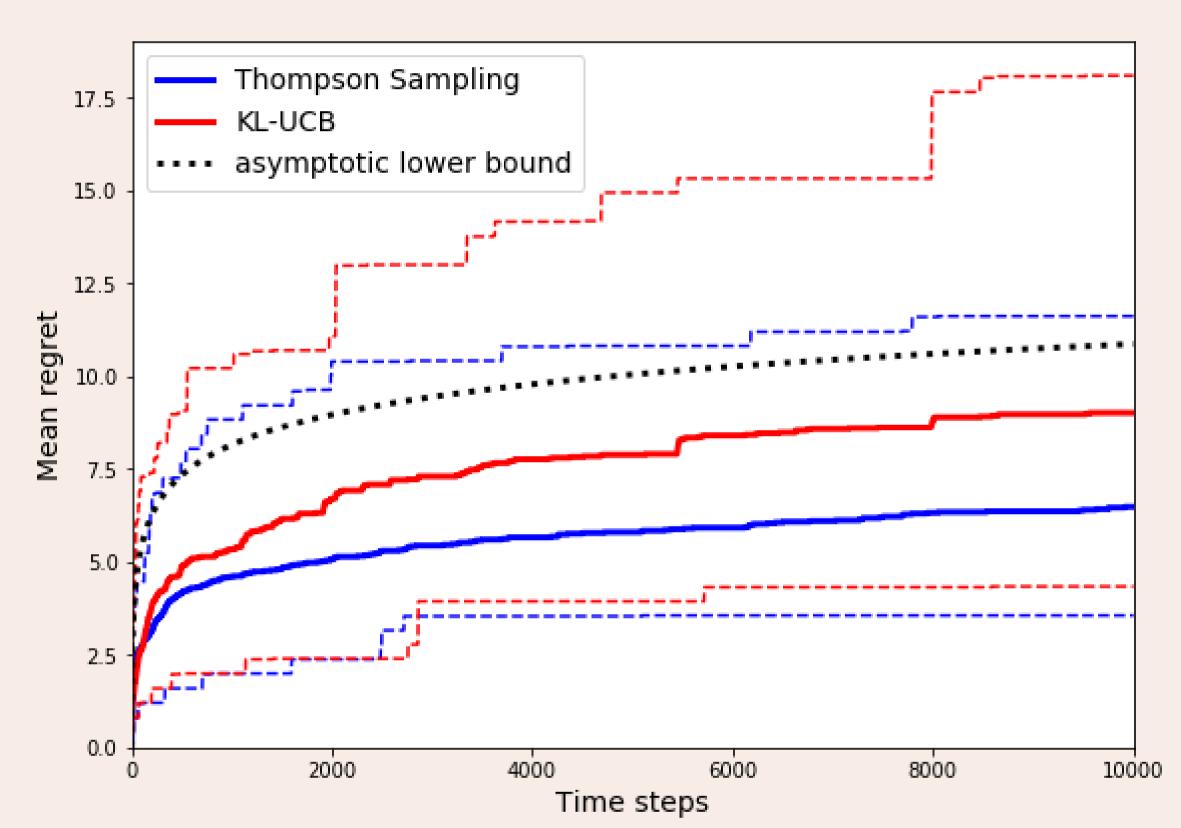
Upper Confidence Bound (UCB) algorithms



Select arm at time t, A_t , maximising the 'upper confidence bound', *i.e.*

- $A_t \in rg \max \left[\hat{\mu}_k(t-1) + f(T_k(t-1))
 ight],$ where $f(T_k(t-1))$ is a decreasing function of $T_k(t-1)$
- $\hat{\mu}_k(t-1)$: encourages exploitation
- $f(T_k(t-1))$ encourages exploration

Can achieve theoretical asymptotic lower regret bound [Lai and Robbins, 1985], using the KL-UCB method.



KL-UCB and Thompson Sampling achieve optimal regret for a 2-armed Bernoulli bandit. The theoretical asymptotic lower regret bound is shown in black. Dashed lines represent 95% confidence intervals, calculated from 20 test runs.

Bayesian Approach: Thompson Sampling

Approach:

- Assume a prior probability distribution for each arm (e.g. $\mathsf{Beta}(\alpha_k,\beta_k))$
- **2** Sample a value θ_k from the prior for each arm, $\theta_k \sim \text{Beta}(\alpha_k, \beta_k)$
- Select arm with maximum θ_k
- Update α_k, β_k

Advantages

- Optimal performance (for Bernoulli bandits)
- Not sensitive to parameters in prior (tuning not required)

Disadvantages

• Only works well if prior pdf is conjugate to the true pdf

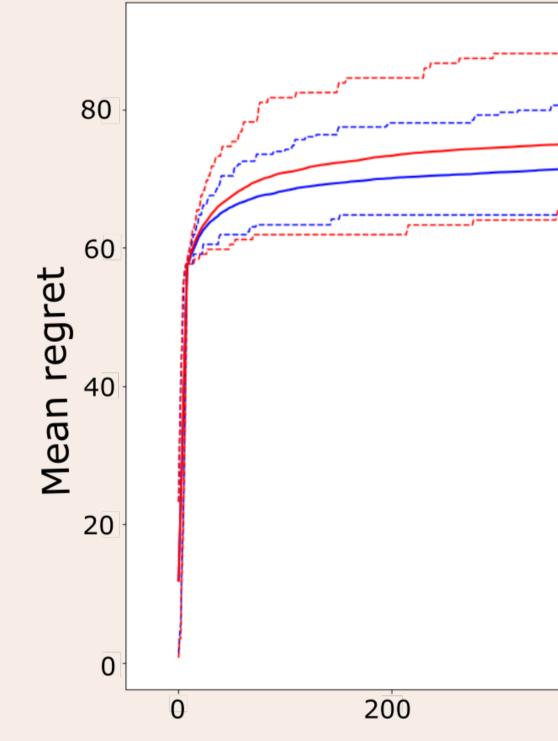
Contextual Bandits

Sometimes, we can use informat about other arms, improving alg buys red jumpers is likely to buy

- Arms are now normalised vect
- The extent to which arms 'po similarity.

LinUCB algorithm

Uses information collected from guiding arm selection



LinUCB generally performs better

Future Work

- probability distributions
- Fix LinUCB and look into extensions

References

- Lai, T. L. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in applied mathematics, 6(1):4–22.
- Lattimore, T. and Szepesvári, C. (2018). Bandit algorithms. preprint.

Lancaster	
University	

cion about one arm to make predictions corithmic performance. <i>e.g.</i> someone who blue jumpers as well. tors. oint' in the same direction shows their
observations to update a 'feature vector',
— regret of LinUCB — regret of UCB
400 600 800 1000 Time steps than a simple UCB algorithm. Plot by Alan Wise.

• Investigate whether different methods perform better for particular bandit

• Consider more complicated examples, *e.g.* bandits in fraud detection