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The Problem

Set-up: K ‘arms’, with different rewards. The reward from each arm follow
an unknown probability distribution. Initially, we don’t know which arm is
best.

Our aim: Find an algorithm minimising the ‘cumulative regret’ after n runs,

Rn ≡ nµ∗ − E

[
n∑

t=1

Xt

]
=

∑
k∈[K ]

∆kE[Tk(n)],

µ∗ - mean of the optimum arm

Xt - reward at time t

[K ] = 1, 2, ...K - set of arm indices

∆k - difference in mean of arm k
and mean of the optimum arm

Tk(n) - number of times arm k has
been played after n runs

This sort of problem arises in e. g.
targeted advertising, clinical trials

Aim to find an algorithm achieving
‘sub-linear regret’, i.e.

lim
n→∞

Rn

n
= 0.

The Exploration/Exploitation Dilemma

To minimise regret, an algorithm must balance two competing approaches:

Exploration: To better estimate the expected reward of each arm, we
need to test different arms.

Exploitation: We should select arms that give us a higher reward more
often.

The Optimism Principle

Our approach is to assume that the environment is as nice as ‘plausibly
possible’ [Lattimore and Szepesvári, 2018].

E. g. Choosing a cafe

Choose a cafe you know well (A), or a new cafe
(B) you haven’t tried before?

Optimism principle → try the new cafe several
times, and update your information

Upper Confidence Bound (UCB) algorithms

Select arm at time t, At, maximising the ‘upper confidence bound’, i.e.

At ∈ arg max
k

[µ̂k(t − 1) + f (Tk(t − 1))] ,

where f (Tk(t − 1)) is a decreasing function of Tk(t − 1)

µ̂k(t − 1): encourages exploitation

f (Tk(t − 1)) encourages exploration

Can achieve theoretical asymptotic lower regret bound
[Lai and Robbins, 1985], using the KL-UCB method.

KL-UCB and Thompson Sampling achieve optimal regret for a 2-armed Bernoulli bandit.
The theoretical asymptotic lower regret bound is shown in black. Dashed lines represent 95%
confidence intervals, calculated from 20 test runs.

Bayesian Approach: Thompson Sampling

Approach:
1 Assume a prior probability distribution for each arm (e. g.

Beta(αk, βk))
2 Sample a value θk from the prior for each arm, θk ∼ Beta(αk, βk)
3 Select arm with maximum θk
4 Update αk, βk

Advantages

Optimal performance (for Bernoulli bandits)

Not sensitive to parameters in prior (tuning not required)

Disadvantages

Only works well if prior pdf is conjugate to the true pdf

Contextual Bandits

Sometimes, we can use information about one arm to make predictions
about other arms, improving algorithmic performance. e. g. someone who
buys red jumpers is likely to buy blue jumpers as well.

Arms are now normalised vectors.

The extent to which arms ‘point’ in the same direction shows their
similarity.

LinUCB algorithm

Uses information collected from observations to update a ‘feature vector’,
guiding arm selection

LinUCB generally performs better than a simple UCB algorithm. Plot by Alan Wise.

Future Work

Investigate whether different methods perform better for particular bandit
probability distributions

Fix LinUCB and look into extensions

Consider more complicated examples, e. g. bandits in fraud detection
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