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What is a multi-armed bandit?
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What is a multi-armed bandit?

Definition: Multi-Armed Bandits

A multi-armed bandit is a set of probability distributions
B ={Bi, By, -, Bk}, with each distribution being associated with the
rewards of one of the K € N levers.

Definition: Bernoulli Multi-Armed Bandits
Bi ~ Bernoulli(p;) where p; € [0,1] is a fixed constant for each i.
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Definition: Horizon

H, the number of pulls we are allowed to make

Definition: Regret

p(T) = max; (Zthl rit> - Zthl Pt
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We use a Bayesian approach

How do we store information?
a;j = "The successes of i" and B; = " The failures of i"

Estimating p;

" ‘ a;_’_a;'yrior
— . — i i
pi - E[pl‘S ] - af+afrior+18}5+ﬁ’prior
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Dynamic Programming

@ Treat the problem as a Markov decision process. A Markov chain but
at each time step we can make a decision and there is a reward
associated to each outcome.

@ Use dynamic programming to calculate the optimal policy using
Bellman's equation:

V(S',t) = max [r(S% i) +a Y P(S™HS, V(ST t+1)
ieB

5t+1

V(s*,H) =0

@ Not a very practical solution due to time and memory required to
compute, but is proven to be optimal.
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Greedy Policy

@ Always exploit and never explore.
@ Problem: No exploration leads to poor results.

@ For example, if we have two bandits with p; = 0.8 and p, =1 then
the greedy method could get 'stuck’ pulling the first arm every time.
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Epsilon Greedy Policy

@ A simple improvement is to add in some random exploration.

@ At each time step with probability € € [0, 1] instead of being greedy,
choose a random arm.

@ Still has obvious errors as we do not care as much about exploring as
time goes on.

o Can replace € by some decreasing sequence ¢; € [0,1]".
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Optimizing parameters

Reward vs Epsilon for the epsilon greedy method on 2 U[0,1] Beroulli bandits Reward vs Epsilon for the epsilon greedy method on 5 UL0,1] Bernoulli bandits
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Figure: Looking for the values of epsilon for epsilon greedy as we increase the
number of bandits
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Thompson Sampling

Another problem with the epsilon greedy methods is we do not think
about how we choose where to explore.

Each arm is given a Beta(af, 5f) prior distribution.

We take a sample and pull the arm with the largest.

The posterior distribution is then Beta(a!™!, 311 due to conjugacy
properties of the distributions.

With an infinite horizon always learns about the best arm.

Matthew Darlington Optimal Learning for Multi-Armed Bandits September 9, 2019 10 / 15



Thompson Sampling

Beta distributions att=0 Beta distributions at t = 50 Beta distributions att = 100
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Figure: Looking how the prior distributions change for B = (0.1, 0.3, 0.5, 0.7, 0.9)
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Knowledge Gradient

@ We look at the value of the knowledge we gain by choosing an arm, if
that is the last choice we get to make.

@ The value of being in a state can be defined as,

Vi(S®) = pj = maxp}
1

@ We then define the knowledge gradient as,

viKG,t —E [Vt-‘rl(st—I—l(l-)) _ Vt(st) | St]

@ Our choice is then made by picking,

arg max [p,t +(H - t)viKG’t]

1
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Comparing Methods

Comparison of the cumulative reward of different algorithms vs Greedy on 2 U[0,1] bandits
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Figure: Comparing the reward of different policies
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Comparing Methods

Comparison of the cumulative regret of different algorithms on 2 U[0,1/3] bandits
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Figure: Comparing the methods in different scenarios
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Thank you for listening
Any questions?
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