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Network Basics

Network G = (V ,E )

Vertices V = {1, . . . ,NV }
Edges {i , j} joining vertices

Figure: A graph with NV = 10
vertices
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Network Basics

Network G = (V ,E )

Adjacency matrix A ∈ RNV×NV

aij =

{
1 if {i , j} ∈ E ,

0 otherwise



0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0 1 0
1 0 0 0 1 0 0 1 0 0
1 0 0 0 1 1 1 0 0 1
0 1 1 1 0 0 0 1 0 0
0 1 0 1 0 0 1 1 1 0
0 1 0 1 0 1 0 0 1 1
0 0 1 0 1 1 0 0 0 0
0 1 0 0 0 1 1 0 0 0
0 0 0 1 0 0 1 0 0 0
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Network Characteristics

Vertex centrality, measures of how “important” a vertex is:

degree - number of edges incident to a vertex

closeness centrality - ccl(v) =
1∑

u∈V d(v ,u)

betweenness centrality - proportion of shortest paths between
pairs of vertices passing through v
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Random Graphs

Random Graphs



Stochastic Block Model

Idea: Split the vertices into groups, and consider all vertices in a
given group stochastically equivalent.

Parameters: NV ,K ∈ N, B ∈ RK×K

Split the NV vertices into K classes (a priori or at random).
Class memberships c = (c1, . . . , cNV

)

P(edge between vertices i and j) = bcicj
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Stochastic Block Model - Example

NV = 35

K = 3

B =

0.9 0.1 0.1
0.1 0.3 0.05
0.1 0.05 0.3



James Boyle supervised by George Bolt Statistical Analysis of Network Data



Measures of Vertex Centrality

Figure: Betweenness Centrality
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Measures of Vertex Centrality

Figure: Closeness Centrality
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Multiple Network Models

Single network models are in general not suitable for modelling
multiple network observations, e.g. brain scans.

Figure: Brain Networks[4]
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Multiple Network Models

Aim: Model multiple noisy realisations of a single “true” network,
i.e. observations of the form

True Network + Noise

For a binary network, noise can only manifest itself in the form of
false positive and false negative observations
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The Measurement Error Model

Model Assumptions[3]1:

True network A ∼ StochasticBlockModel(NV ,K ,B)

Observation noise A(1), . . . ,A(n) respects the block structure

Concretely, letting P,Q ∈ RK×K be the matrices of false positive
and false negative rates respectively, we suppose that

A
(m)
ij ∼

{
Bernoulli(Pcicj ) if Aij = 0

Bernoulli(1− Qcicj ) if Aij = 1

1C. M. Le, K. Levin, E. Levina, et al. Estimating a network from multiple
noisy realizations.Electronic Journal of Statistics, 12(2):4697–4740, 2018
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The Measurement Error Model
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The Measurement Error Model
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Metric Based Models

Idea[4]2: Assign probabilities to networks based on their distance
from a central, “true”, network.

e.g. For a true network G true , the Spherical Network Model
assigns

P(G ;G true , γ) ∝ exp(−γd(G ,G true))

2Lunagomez S., Olhed, S. C., and Wolfe P. J. (2020). Modeling network
populations via graph distances.Journal of the American Statistical Association
(just-accepted):1–59
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On Things not Covered

Network Path data - Each data point is a path through a network
e.g. vertex ↔ webpage

edge ↔ navigation by user between webpages

Inference - Very complicated, so approximate methods such as
MCMCMLE or EMA must be used

Single Network Models

Dynamic networks
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