Applications	Current Methods	Development	Future work	References
0	00000	00	00	O

Online Sparse Temporal Disaggregation

Matthew Speers

Supervisor: Luke Mosley

August 2020

▲口 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Matthew Speers

Introduction	Applications	Current Methods	Development	Future work	References
● 0					

Sparse Temporal Disaggregation

Temporal dissagregation

The process of deriving high frequency data from low frequency data through the use of related high frequency indicator series.

A **sparse** method attempts to simplify the model by discounting the effects from some indicator series.

$$\hat{\beta}_{\lambda} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2} ||y - X\beta||_2^2 + \lambda ||\beta||_1.$$

イロト イヨト イヨト イヨト

Matthew Speers

Introduction	Applications	Current Methods	Development	Future work	References
00					

Converting to an online framework

What about when we have real time observations?

Ideally:

- 1 new data is received sequentially,
- 2 our model can be reliably updated to consider this new data,
- 3 this update is efficient to compute.

We can use online methods to achieve this.

Applications	Current Methods	Development	Future work	References

Applications of Online Sparse Temporal Dissagregation

Weather forecasting: Forecasting models often need higher precision measurements than have been recorded. See [Barton et al., 2020].

Economic indicators: For example, using supermarket checkout data to analyse inflation.

- 4 回 ト 4 三 ト 4 三 ト

Applications	Current Methods	Development	Future work	References
	00000			

Examples of online algorithms

Onine gradient descent (OGD): Uses gradient calculated from entire data set in update rule. See [Hazan et al., 2008].

Stochastic gradient descent (SGD): Estimates the gradient to use in update rule. See [Bottou, 2010].

Regularised dual averaging (RDA): Uses the whole regularisation term at each step to ensure sparsity. See [Xiao, 2009].

Forward-backsplitting (FOBOS): Interleaves analytical minimsation steps with subgradient steps. See [Singer and Duchi, 2009].

Applications	Current Methods	Development	Future work	References
	00000			

Alternating Direction Method of Multipliers (ADMM)

ADMM: Solves convex optimization problems by breaking them into easier to handle smaller pieces.

Take the minimisation problem:

$$\min ||(y - X\beta)||_{2}^{2} + \lambda ||z||_{1}$$

such that $\beta - z = 0$.

$$\mathcal{L}(\beta, z, \mu) = ||(y - X\beta)||_2^2 + \lambda ||z||_1 + \mu^T (\beta - z) + \frac{\rho}{2} ||\beta - z||_2^2$$

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○ ○

See [Suzuki, 2013] for more information.

Applications	Current Methods	Development	Future work	References
	00000			

Alternating Direction Method of Multipliers (ADMM)

The iterative update rules can be found to be:

$$\begin{split} \beta^{k+1} &= \operatorname*{arg\,min}_{\beta} \mathcal{L}(\beta, z^k, \mu^k) \\ z^{k+1} &= \operatorname*{arg\,min}_{z} \mathcal{L}(\beta^{k+1}, z, \mu^k), \\ \mu^{k+1} &= \mu^k + \beta^{k+1} - z^{k+1}. \end{split}$$

Problem: ADMM requires that all the data be stored in memory. **Possible Solution:** OADM, see [Wang and Banerjee, 2013].

Applications	Current Methods	Development	Future work	References
	00000			

Online Alternating Minimisation Algorithm (OAM)

Proposed by [Li and Li, 2020].

OAM benefits compared to OADM:

- OADM depends heavily on new data, OAM does not,
- OAM is based on recursive least squares,
- OAM can give closed-form solutions for LASSO.

Applications	Current Methods	Development	Future work	References
	00000			

Pseudocode for OAM

Algorithm 1 OAM algorithm

1: Initialize with
$$P_0 = I$$
, $\alpha_0 = \alpha_{-1} = 0$, $\theta_0 = 0$.

2: for
$$n = 0, 1, 2, \cdots$$
 do

3:
$$c_{n+1} = 1/(1 + \varphi_{n+1}^T P_n \varphi_{n+1});$$

4:
$$d_n = \alpha_n - \alpha_{n-1};$$

5:
$$g_{n+1} = c_{n+1}P_n\varphi_{n+1};$$

6:
$$e_{n+1} = y_{n+1} - \varphi_{n+1}^{I} \theta_{n};$$

7:
$$P_{n+1} = P_n - g_{n+1}g_{n+1}^T/c_{n+1};$$

8:
$$\theta_{n+1} = \theta_n + g_{n+1}e_{n+1} + \mu P_{n+1}d_n;$$

9:
$$\alpha_{n+1} = \operatorname{Soft}(\theta_{n+1}, \lambda/\mu).$$

10: end for

Applications	Current Methods	Development	Future work	References
0	00000	●0	00	O

Combining ADMM & OAM

ADMM: Constrains the difference between β and z, but is memory intensive.

OAM: Faster, but doesn't consider difference between β and z.

Solution: Combine both algorithms into a 'New OAM' algorithm.

Applications 0	Current Methods 00000	Development ○●	Future work 00	References O

Data Analysis

Target Variable: Quarterly GDP

Indicator Series Used: VAT diffusion indices for both agriculture and construction, road traffic data at ports, monthly business surveys for production and services, retail sales

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Variables Selected: VAT construction, MBS services, MBS production and XL vehicles

	Applications	Current Methods	Development	Future work	References
	O	00000	00	●0	O
Tuning					

For an ℓ_1 -penalised least-squares optimisation problem:

$$\hat{\beta}_{\lambda} \in \operatorname*{arg\,min}_{b \in \mathbb{R}^p} \frac{1}{2} ||y - Xb||_2^2 + \lambda ||b||_1,$$

the selection of λ is very important.

Hedging parameter selection [Chretien et al., 2018] could be looked into as a way of doing this.

Applications	Current Methods	Development	Future work	References
			00	

Other further work

Some more ideas:

- Test the combined algorithm using more data
- Find ways of choosing prioritising old/new data

Applications	Current Methods	Development	Future work	References
0	00000	00	00	•

References I

- Barton, Y., Sideris, I. V., Germann, U., and Martius, O. (2020).
 A method for real-time temporal disaggregation of blended radar-rain gauge precipitation fields.
 Meteorological Applications, 27(1):e1843.
- Bottou, L. (2010).

Large-scale machine learning with stochastic gradient descent. In *Proceedings of COMPSTAT'2010*, pages 177–186. Springer.

Chretien, S., Gibberd, A., and Roy, S. (2018). Hedging parameter selection for basis pursuit. *arXiv preprint arXiv:1805.01870*.

Applications	Current Methods	Development	Future work	References
0	00000	00	00	•

References II

Hazan, E., Rakhlin, A., and Bartlett, P. L. (2008). Adaptive online gradient descent.

In Advances in Neural Information Processing Systems, pages 65–72.

Li, J. and Li, X. (2020).

Online sparse identification for regression models. *Systems & Control Letters*, 141:104710.

Singer, Y. and Duchi, J. C. (2009).
 Efficient learning using forward-backward splitting.
 In Advances in Neural Information Processing Systems, pages 495–503.

Applications	Current Methods	Development	Future work	References
				•

References III

Suzuki, T. (2013).

Dual averaging and proximal gradient descent for online alternating direction multiplier method.

In International Conference on Machine Learning, pages 392 - 400

Wang, H. and Banerjee, A. (2013). Online alternating direction method (longer version). arXiv preprint arXiv:1306.3721.

Matthew Speers

Applications 0	Current Methods	Development 00	Future work 00	References •

References IV

📔 Xiao, L. (2009).

Dual averaging method for regularized stochastic learning and online optimization.

In Advances in Neural Information Processing Systems, pages 2116–2124.