Machine Learning in Simulation

Thomas Newman Supervisor: Graham Laidler

September 2, 2020

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへ⊙

Thomas Newman Machine Learning in Simulation

Stochastic simulation:

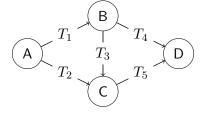
Is a method for analysing the performance of systems whose behaviour depends on the interaction of random processes, processes that can be fully characterised by probability models. Reasons to use stochastic simulations:

- **1** Feasibility: Will a project "work"?
- 2 Sensitivity: How important are the things we do not know?

3 Optimisation: What are the good options and how good are they?

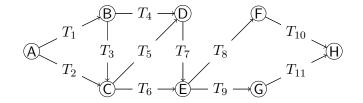
(日) (四) (三) (三)

Simulation analytics:


Simulation analytics refers to the methodology of applying machine learning or data analytics to the data generated by a stochastic simulation in order to understand more about how it behaves.

Basics of Simulation Analytics	Understanding How a System Behaves	What's Next	References
	000000	O	00

Reasons to use simulations analytics:


- Understand the relationships of inputs and system state to outputs.
- 2 Full characterization of the observed output behaviour, marginally at a point in time, and dynamically across time.
- **3** Understanding about how and why alternative system designs differ, and how they will behave if implemented.
- 4 To generate inverse conditional statements: relationships of outputs to inputs or the system state.

Basics of Simulation Analytics	Understanding How a System Behaves	What's Next	References
	●00000	0	00

Time	Task1	Task2	Task3	Task4	Task5	Longest Path
0	0	0	0	0	0	19.32
1	1	1	0	0	0	19.32
2	1	2	0	0	0	19.32
3	2	2	1	1	0	19.32
						19.32
19	2	2	2	2	1	19.32
20	2	2	2	2	2	19.32
0	0	0	0	0	0	21.07
						21.07

Thomas Newman

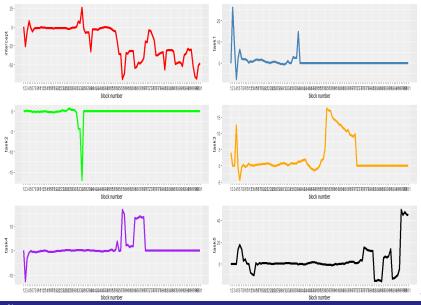
Time	Task1	Task2	Task3	 Task11	Longest Path
8	2	2	1	 0	60.14
55	2	2	2	 1	59.32
13	2	2	2	 0	57.84
3	1	1	0	 0	61.55

Thomas Newman

1 Split data into blocks.

- 2 Predict using K-fold cross validation logistic regression.
- 3 Plot task coefficients, correct classification rate and Kappa.

< ロ > < 回 > < 回 > < 回 > < 回 >


3

1 Creating overlap between consecutive blocks.

2 Changing the probability distributions of task durations to something more realistic.

Understanding How a System Behaves 000000

Thomas Newman

Basics of Simulation Analytics	Understanding How a System Behaves	What's Next	References
	000000	●	00

What's Next?

- **1** Look at change points detection: univariate and multivariate
- 2 Outliers detection and effect of removal on increase robustness.
- **3** Look at the effect of changing the probability threshold of the logistic regression on the correct classification rate.

Basics of Simulation Analytics	Understanding How a System Behaves	What's Next	References
	000000	O	●0

- James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.
- Nelson, B. (2013). Foundations and methods of stochastic simulation: a first course. Springer Science and Business Media.
- Nelson, B. L. (2016). 'Some tactical problems in digital simulation'for the next 10 years. Journal of Simulation, 10(1), 2-11.

Understanding How a System Behaves

・ロト ・回 ト ・ヨト ・ヨト ・ヨー うへの

Thomas Newman Machine Learning in Simulation